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Abstract
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Under the UN’s program for Reducing Emissions from Deforestation and Forest Degra-
dation (REDD+) developing countries can receive payments from interested parties in
exchange for conserving their forests. We study such programs and ask when coun-
tries can reach agreements to conserve natural resources. Specifically, we analyze a
formal model where a developing country controls a limited non-renewable resource
that they prefer to consume, while another country prefers that it be preserved. We
present four main results. First, successful conservation is only possible once the for-
est is sufficiently small. Second, there exists a trade-off between conservation and
the share of bargaining surplus that goes to the developing country. Third, by allow-
ing leakage, developing countries can increase their rents from agreement, but simul-
taneously undermine conservation. Finally, conservation is maximized and leakage
averted when developing countries dictate the terms of agreements.
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1 Introduction

In 2020, Brazil proposed that the developed world make it an annual payment of 10 billion
USD to cover the cost of addressing the numerous challenges related to the conservation
of the Amazon biome (Harris 2020). Similarly, but with a much smaller price-tag, in
2007 Ecuador asked wealthy countries to pay them 350 million USD a year, for 10 years,
in exchange for leaving an estimated one billion barrels of oil under the ground in the
pristine Yasuni rainforest (NY Times 2007). Neither country was paid.

These are but two example of a recurring conflict. The developed world wants de-
veloping countries to forego the use of natural resources that have economic value. In
return, the resource owners want compensation for forgoing the consumption of those
resources. A common manifestation of this dilemma is the problem of forest manage-
ment and conservation. International actors value the forest’s ability to sequester carbon
and support biodiversity. The home countries, who may also value these things, see the
economic value of timber and alternative land use that can improve the lives of their cit-
izens. On the one hand, deforestation and forest degradation is a major cause of carbon
dioxide equivalent emissions (C02e), accounting for 12% of global anthropogenic CO2e
emissions by recent estimates (Van Der Werf et al. 2009). At the same time, Mullan et al.
(2018) show that converting rainforest to agricultural land leads to significant increases in
household income and the accumulation of wealth, which facilitates access to education
and medicine, a reduction in poverty, and generally higher standards of living.

In response to these competing goals, the international community negotiated a frame-
work designed to facilitate conservation agreements. Under the United Nation’s program
for Reducing Emissions from Deforestation and Degradation (REDD+), adopted in 2013,
developed countries can pay developing ones not to consume their forests. REDD+ con-
sists of a set of guidelines for agreements that play an important role in reducing trans-
action costs. However, it leaves the amount conservationists should pay forest owners
for their conservation efforts unspecified. As the examples cited above illustrate, this can
prevent agreements from being reached.

At its core, the fundamental problem is that someone who does not own a particular
resource wants to prevent its consumption. Unlike typical international environmental is-
sues, which focus on public good provision or the tragedy of the commons (Barrett 2005),
international cooperation related to conservation is best thought of as a Coasian problem
in which two parties bargain to address the externalities that one’s actions impose on the
other (Coase 1960; Muradian et al. 2010). In this case, the issue is: What kinds of mutually
beneficial agreements are possible? What are the fundamental strategic constraints on
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payment for conservation programs?1

To answer these questions, we develop a theory of bargaining over conservation. We
consider the case where one country controls a limited non-renewable resource that they
prefer to consume, while another country prefers that it be preserved. The consumption
process is dynamic, in that the owner can consume one unit of resource at a time, and
there is limited commitment on the owner’s part. In particular, the owner cannot sell the
resource to the conservationist, and they cannot promise to conserve, or even consume,
the resource when it is not in their interest to do so. This strategic interaction is naturally
described by a dynamic game where proposed per period payments are made, followed
by decisions from the resource holding country to consume or not. This strategic setting
could apply to a number of different goods including forests, endangered species, or peat
deposits. Since the strategic incentives are the same across these resources, it is easiest to
write, and think, in terms of a single resource, forests. Like Harstad (2016), hereafter we
will treat the resource as a tropical forest, refer to a unit of the resource as a tree, and to
the unconsumed stockpile of the resource as a forest.

Our analysis focuses on answering three questions: How is the bargaining surplus di-
vided between the forest’s owner and the conservationist outsider? What is the greatest
amount of conservation can hope for when actors bargain over a good that has both eco-
nomic and environmental value? How does the distribution of benefits and the amount of
forest conserved vary as a result of the framework within which agreements are reached?
Specifically, what are the effects of proposal power, short-term enforceability of agree-
ments, and uncertainty about future prices?

Our central finding is that conservation agreements will be plagued by a trade-off be-
tween the quantity of forest conserved and the distribution of benefits from conservation.
This is intuitive. For the forest owner to conserve, it must be adequately compensated for
forgoing consumption. Conserving larger stocks of trees requires that the forest owner
consume less and that compensation increase commensurately. If the conservationist has
decreasing marginal returns to conservation, then they will only be willing to pay for
conservation once the forest reaches a sufficiently small size and any attempt to increase
the marginal cost of a unit good beyond what its owner would obtain by consuming it
raises the marginal costs of conservation and leads to fewer units being conserved. Sub-
sequently, there exists a trade-off between conserving larger forests and providing larger
shares of the bargaining surplus from conservation to the developing countries that own
them.

1This theme is similar to Colgan, Green and Hale (2021) where they discuss how the distributional
consequences of asset revaluation affect the politics surrounding climate change cooperation.
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Formally, we explore this trade-off by probing how different bargaining arrangements
affect the size of the forest preserved and the share of the surplus going to the developing
country. Specifically, we vary (i) whether the conservationist or the forest owner has the
power to propose agreements and (ii) whether agreements commit the forest owner to
conserve or allow them to abscond with the money and consume anyway. This investi-
gation produces three key results. First, the forest owner can never do worse than receive
their market value for the good. When the conservationist has the power to propose
binding agreements, then they share none of the surplus with the forest owner.

Second, we find that developing countries can ensure that they receive a higher share
of the bargaining surplus by allowing for leakage. A common feature in the environmen-
tal literature, leakage occurs when conservation efforts only partially restrict consump-
tion thereby allowing actors to circumvent them. In the context of deforestation leakage
entails conserving only a subsection of the forest and leaving the remainder unprotected.
To study leakage, we consider what happens when the conservationist is only allowed
to pay to protect a proper subset of the forest. We show that leakage equates to a strate-
gic environment where the conservationist can only propose nonbinding agreements. To
induce the forest owner to conserve under these conditions, the conservationist must in-
crease their payments such that the forest owner is indifferent between defecting from
the agreement and not. Consequently, the forest owner benefits from leakage by allowing
them to increase their share of the bargaining surplus. Substantively, this result provides
a micro-foundation for leakage, suggesting that it serves as a means by which developing
countries can extract surplus from wealthy states in conservation agreements. In terms of
conservation, this strategic environment produces the worst results of all those we exam-
ine.

Third, we show that conservation is maximized when the forest owner has the power
to propose agreements regardless of whether agreements are binding or not. Proposal
power allows the forest owner to extract a share of the surplus from agreements from the
conservationist, incentivizing the forest owner to reach conservation agreements as soon
as possible. It also enables the forest owner to coerce the conservationist into accepting
agreements early by giving it the ability to threaten the conservationist with worse agree-
ments off the equilibrium path if the conservationist refuses to pay and allows the forest
to shrink further. This is possible because the forest owner cannot commit to consuming a
tree conditional on rejection of its demands, thereby causing both countries to play mixed
strategies - the conservationist mixes as to whether they accept demands and the resource
owner mixes in response when deciding whether to consume or not following a rejection.
In such an equilibrium the forest owner is indifferent amongst a set of possible demands
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when accounting for that larger demands are more likely to be rejected, however the con-
servationist strictly prefers smaller demands allowing the forest owner to condition their
future offers on rejection of present ones. Furthermore, the resource owner’s share of the
surplus from the agreement is the same as that which it extracted under leakage. This is
because of the inability of the forest owner to commit to consuming a tree implies that any
agreement must leave it indifferent between consuming a tree conditional on rejection of
the agreement. Substantively, these results suggest that conservation agreements opti-
mize both the size of the forest and the share of the surplus going to developing countries
when they can set the terms of agreements.

Our model builds on the work of Harstad (2016) who introduced the concept of a ”con-
servation good", whose consumption by its owner imposes an externality on a potential
buyer, and then modelled the strategic interactions that occur when the owner tries to ei-
ther sell or lease the good to the buyer. To motivate his work, Harstad argues that forests
are a conservation good and that his model captures the strategic interactions involving
payment for ecosystem services. However, forests are large and composed of numerous
hectares that cannot all be consumed at once. Therefore, our work extends Harstad (2016)
by analyzing the case where the resource owner has numerous units of the conservation
good, which they can consume at a limited rate. This allows us to study the trade-off be-
tween the number of units conserved, the distribution of benefits from conservation, and
how this is impacted by different bargaining protocols, limited commitment, and chang-
ing prices. Moreover, certain features of our modelling environment, like leakage, can
only be reproduced by studying a market with multiple units of the consumption good.

An additional number of related papers study conservation problems in different con-
texts where one or more countries want to induce others to conserve a resource.2 Harstad
(2012) studies how countries can combat CO2 emissions when each can only reduce their
own consumption of energy, thereby generating leakage - as a country reduces its demand
for unclean energy, its price drops and consumption increases elsewhere. He shows that
country’s can solve the leakage problem by buying coal reserves and then conserving
them, thereby reducing the supply of unclean energy inputs. Harstad (2022) studies how
to design trade agreements that eliminate a resource owner’s incentive to consume a for-
est in order to transform it into farmland so as to produce more resources to be traded.

2A subset of these focuses on issues related to the role of monitoring and illegal deforestation on con-
servation or the ability to conclude and implement conservation agreements. These are always focused
on strategic interactions that occur on the subnational level, either between an NGO and a single commu-
nity (Gjertsen et al. 2021) or on spillover effects on illegal deforestation between local governments (Burgess
et al. 2012; Harstad and Mideksa 2017). However, monitoring does not appear to be an issue for the country-
to-country agreements that we study as high-resolution satellite imagery has allowed for an accurate and
low-cost solution to the monitoring problem at the national level (Hansen et al. 2013).
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He shows that by making tariffs and the division of the gains from trade contingent on
the number of trees, a trade partner can eliminate the owner’s incentive to conserve. In
Section 6 of our paper, we compare this to our qualitatively similar result in which the
resource owner induces the interested party to pay to conserve larger quantities of the
forest by making the division of the surplus from the agreement contingent on the size of
the forest in which an agreement is first reached.

From a technical perspective our model contributes to the theory of bargaining over a
good with dynamic value and bargaining with externalities. However, most papers in this
vein have the externality arise due to strategic interactions between multiple buyers. For
example, Segal (1999) studies a model in which a principal forms contracts with agents
that might then impose externalities on agents who do not come to an agreement with the
principal. Genicot and Ray (2006) and Iaryczower and Oliveros (2017) consider models in
which one or more principals bargain with agents sequentially to contribute to a public
good wherein the value to contributing changes with the number of agents who have
already joined. Jehiel and Moldovanu (1995) show that delay can arise in the sale of an
indivisible good whose purchase imposes negative externalities on other buyers.

We start with a discussion of conservation agreements, and the international frame-
work created to facilitate them. We then define a conservation good, describe the scope
of our analysis, and analyze a model of the bargaining between two countries over con-
servation. Next, we consider a series of extensions of the baseline model where we vary
the proposal power, and the short-term enforceability of agreements, uncertainty about
future prices. Along the way, we describe how features of international environmental
politics motivate our modeling choices and the empirical implications of our theoretical
result.

2 Payment for Ecosystem Services Programs

Within the environmental literature and the policy community, agreements wherein one
or more countries provide transfers to another to reduce its levels of deforestation are
typically categorized as a form of Payment for Ecosystem Services (PES). More broadly,
PES programs are defined as ". . . a transfer of resources between social actors, which aims
to create incentives to align individual and/or collective land use decisions with the so-
cial interest in the management of natural resources (Muradian et al. 2010, p.1205)." 3 PES
programs are attractive in an international context because they provide positive incen-
tives for conservation by allowing those who hold resources that have both economic and

3Also see Wunder et al. (2020).
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environmental value to be compensated for foregoing the economic benefits. Moreover,
their voluntary nature implies no loss of sovereignty or value by resource owners, who
are most often developing countries (Angelsen 2017, pp. 248-249).

Recognizing these benefits and the role of deforestation in climate change, the inter-
national community sought to promote PES programs targeted at the conservation of
forests. At COP 19, held in Warsaw in 2013, the United Nations formally adopted a
framework for PES programs called Reducing Emissions from Deforestation and Degra-
dation (REDD+). The Warsaw framework sets forth three important principles for the
governance of PES programs.4 First, countries were to be assessed on their eligibility for
payments based on their conservation efforts at the national level. This set the stage for
the national government being the principal negotiators of PES programs under REDD+.
Second, a reduction of CO2 emissions was adopted as a standardized measure by which
program recipients would be assessed. Specifically, a REDD+ program requires an estab-
lished baseline level of CO2 emissions from forests and then specifies the level of changes
from that baseline that will result in payment. Third, it made payment contingent on
“measurable, reported, and verifiable results". Though a REDD+ program requires that
countries have a national forest monitoring system, satellite imagery allows for quick de-
tection of any large-scale misreporting of tree cover loss (Hansen et al. 2013).

Numerous developing countries have signed or attempted some form of PES pro-
gram. Norway has led the charge in funding such programs and signed REDD+ agree-
ments with Brazil, Ethiopia, Guyana, Indonesia, Liberia, Myanmar, Mexico, Tanzania,
and Vietnam (Angelsen 2017). The success of these REDD+ programs has varied. For ex-
ample, a bilateral agreement negotiated between Norway and Guyana in 2009 in which
Norway promised Guyana 250 million dollars for limiting its deforestation activities is
credited with reducing tree cover loss by 34 percent over a five-year period (Roopsind,
Sohngen and Brandt 2019). By contrast, a similar 2010 agreement between Norway and
Indonesia had limited effects, and very little of the one billion dollars pledged was ever
transferred (Williams 2023, Ch. 3).

In other instances, developing countries have put out a call for funds. In May 2022,
the Democratic Republic of Congo announced that it would auction rights to oil and gas
exploration in large swathes of the rainforest and peatland with the goal of securing re-
sources to further economic development (Maclean and Searcey 2022). Congo expressed
a willingness to withdraw the lots from auction if provided with a suitable alternative.
However, at the time of this writing, no country or coalition of countries had come forth
with a monetary offer to pay the DRC to preserve the lots. Similarly, Ecuador’s aforemen-

4Voigt and Ferreira (2015) provides an excellent summary of the Warsaw framework.
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tioned attempt to receive payments to conserve the Yasuní rainforest ended in failure.
Finally, note that our focus is on country-to-country PES programs. As such, we ex-

clude the many national initiatives that sometimes receive international support. State or
NGO led programs, while important, are not covered by the scope of our theory.5

3 Baseline Model

Given the typical structure of an international payment for conservation agreement, we
start with a baseline model of dynamic two-player bargaining with short-term agree-
ments. Formally, assume there are two players, Home and Foreign, who participate in an
infinite-horizon dynamic game that occurs in discrete time t = 1, 2, 3, . . .. At the outset,
Home controls N units of a non-renewable resource that they can consume one at a time
for as long as there is resource to consume. Foreign has a preference for the resource to be
conserved and go unharvested. Examples of such goods are a rainforest or an endangered
species. It could also represent a preference not to drill for oil or mine for minerals.

At a time t, there are Nt ≤ N parcels of the resource remaining. At the beginning of
each period, Foreign proposes a transfer xt it is willing to make to Home for conservation.
Home then can accept or decline the transfer. 6 Initially, we assume that if Home accepts
the transfer, then they must conserve that period. Later, we will relax this assumption
and allow for agreements that do not commit Home to conserve. For now, define the set
of all possible states of the resources as Nt = {0, 1, . . . , Nt}. Then, the action space for
Home is

AH = {(reject, conserve), (reject, consume), (accept)} (1)

and the action space for Foreign is
AF = R+.

Finally, let H be the set of histories of the game, including all previous actions and real-
ization of the state, with a specific history at time t being ht.

A strategy for Home is then a function mapping the state, the offer, and the history
into the set of actions. Formally σH : Nt ×R+ ×H → ∆AH. A strategy for Foreign is a
mapping from the state and the history into transfers, σF : Nt ×H → ∆AF.

5An example of a state-led program would be China’s rewarding of farmers for converting farmland to
forest along the yellow river to prevent erosion between 1998 and 2005 (Cao, Chen and Yu 2009) (Li 2003).
An example of NGO led program would the Carbon Livelihoods Project in Mozambique that offered direct
subsidies to farmers who planted trees on their farms (Hegde and Bull 2011).

6We model the payments in this way because many REDD+ agreements specify annual payments (con-
ditional on conservation) and, furthermore, sovereign countries are not bound to any long-term agreement
they might reach on these issue. See https://www.reddprojectsdatabase.org/view/map.php.
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Thus, for every xt a strategy for Home is a probability for each action.

σH(xt|Nt, ht) = {σa
H(xt|Nt, ht), σrc

H (xt|Nt, ht), σ
rp
H (xt|Nt, ht).} (2)

and for each state and history, a strategy for Foreign is an offer (distribution),

σF(Nt|ht) = F(xt|Nt, ht). (3)

such that
Pr(xt ≤ x̂|Nt, ht) = F(x̂|Nt, ht).

Home’s utility in a period for consuming a unit of resource is π, while not consuming
in a period gives a payoff of zero.7 Foreign has a period utility uF(n), which we assume to
be increasing and concave in the units of the resource remaining at the end of the period,
with uF(0) = 0. Foreign also has a disutility of transfers −x.

All players discount future payoffs by a common discount factor δ ∈ [0, 1]. Also, let
ψ(Nt, aH) be the transition function for the state and define it such that

ψ(Nt, aH) =

Nt if aH ∈ {(accept), (reject, conserve)}
Nt − 1 otherwise.

(4)

Foreign has the following expected utility function

UF(xt|N, ht) = ∑
aH∈AH

σaH
H (xt|Nt, ht)[uF(ψ(Nt, aH)]− 1aH xt

+δVF(ψ(Nt, aH)|ht+1)]

(5)

where 1aH is an indicator function equaling 1 if Home accepts the transfer. Home’s ex-
pected utility function for a strategy is given by

UH(xt|N, ht) = σa
H(xt|Nt, ht)[xt + δVH(Nt|ht+1)]

+σrc
H (xt|Nt, ht)[π + δVH(Nt − 1|ht+1)]

+σ
rp
H (xt|Nt, ht)δVH(Nt|ht+1).

(6)

Our solution concept is subgame perfect equilibrium, meaning that we require that both
Foreign’s and Home’s strategy maximize their expected utility at every subgame.

7π can capture the irreversible elements associated with the value of consuming the resource. For ex-
ample, the market price, but also the value that the conversion of the resource into capital that can have
long-run productivity effects.
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4 Foreign Makes Offers with Commitment

First we show that any subgame perfect equilibrium where Foreign can make binding
offers can only feature agreements as a result of pure stationary Markov strategies. This
greatly simplifies the analysis and rules out scenarios where either country punishes or re-
wards the other for past behavior. For example, Home cannot extort Foreign by rejecting
offers and chopping down trees to receive larger transfers from Foreign in future periods.
Similarly, Foreign cannot entice Home to delay consuming the forest by promising large
future payments.

To begin, note that in any state that the two countries reach an agreement, their utility
is fixed and independent of history. All proofs can be found in the appendix.

Proposition 1. (History-Independent Utilities) In any subgame perfect equilibrium, countries
have state-dependent utilities that are independent of history. Homes’s is always given by

U∗H(N) =
N

∑
i=1

πδi−1 (7)

and Foreign’s utility is given by

U∗F(N) =
u(N)

1− δ
−

N

∑
i=1

πδi−1 (8)

if the countries are in a state in which Foreign makes an acceptable offer.

The logic underlying this result is straightforward. Though the game has an infinite
horizon, the state with zero trees is an absorbing state that provides both countries with a
unique payoff of zero. Since this payoff is fixed, Home cannot condition Foreign’s future
payoffs on their actions when there is one tree. As a consequence, the most Home can
expect to receive by cutting down the tree is π. It follows that Home should accept any
stream of payments that guarantee it at least π. Since Foreign will seek the minimal pos-
sible payment home will accept, Home will receive a stream of payments worth exactly
π. But this then implies that both countries will have a fixed utility in the state with just
one tree. The proof uses an induction argument to show that this logic generalizes, so
that payoffs are fixed in states with any arbitrary number of trees N.

Having demonstrated that the two countries have state utilities that are independent
of history in any subgame perfect equilibrium, we can now show that the countries must
play pure Markov strategies whenever an agreement is reached. We hereby refer to an
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equilibrium that features such an agreement as a Pure Strategy Markov Agreement Equi-
librium.8

Proposition 2. (Markov strategies) Any subgame-perfect equilibrium must be a pure Strategy
Markov Agreement Equilibrium.

To see why this is true, first observe that in states where an offer is accepted with pos-
itive probability a pure Markov strategies require that Foreign make a state-dependent
offer x∗(N) that guarantees Home a utility of U∗H(N), which is history-independent, to
sustain conservation over time. Any deviation from this payment that also makes Home
indifferent between accepting and rejecting and consuming, but depends on the history,
must be balanced out with either higher or lower payments in future periods. The prob-
lem is that one of the two players would always have an incentive to deviate. If payments
are ever larger than x∗(N), then Foreign can always reduce the size of their payment and
have Home accept in that period. Conversely, if Foreign ever makes an offer smaller than
x∗(N), then Home will strictly prefer to chop down the tree rather than accept the offer.
With utilities fixed for future states, the two countries are unable to adjust their future
strategies to prevent these deviations; Foreign is therefore unable to commit to making
higher offers in the future and Home is unable to commit to accepting low offers. We can
also rule out equilibria where Foreign plays mixed strategies when making offers with
a mean of x∗(N) because at any history where the realization of the offer is less than
x∗(N) Home prefers to consume. This eliminates the possibility of the countries mak-
ing history-dependent offers, 1) when there is a probability of accepting and 2) that put
positive probability on smaller offers, but ensure Home an expected utility of U∗H(N).

Substantively, this means typical mechanisms associated with repeated games com-
mon in the environmental politics literature have limited application for payment for
ecosystem service problems (Barrett 2005). Punishment and reward strategies that de-
pend on historical reputations for conservation or consumption are not particularly rele-
vant for successful cooperation in this instance.

4.1 Optimal Offers

The previous section demonstrated that both countries play pure Markov strategies when
agreements are reached. This implies that we can focus on strategies that depend solely

8Note that strategies in this case are not fully Markov strategies because, when no agreement can be
reached, Foreign can play any strategy conditional on its offer being rejected. If it doesn’t matter what low
offer, Foreign makes, it could, in principle, make lowball offers that are history-dependent.
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on the current size of the forest Nt. The following Proposition characterizes the payments
required to conserve the forest.

Proposition 3. If the two countries reach an agreement in the state with N trees, then Foreign
will make the following offer

x∗(Nt) = (1− δ)
N

∑
i=1

πδi−1 = π(1− δN) (9)

Interpreting these payments is straightforward. Though Home would only obtain π

from chopping down a section of the forest in this period, Home can anticipate the returns
of future consumption. Therefore, Foreign must compensate Home for the discounted
stream of π values it would receive if it consumed the entire forest.

Note that δ exerts two competing effects on the size of payments. First, when δ is small,
such that Home discounts the future, Home’s value for the forest ∑N

i=1 πδi−1 decreases.
Because Home can only consume one tree at a time, Home will have a lower value for
trees that she will only be able to consume in future periods. Conversely, as δ increases
Home’s value for the forest increases, and she will demand to be paid not only for the
tree she will conserve today, but also for her future consumption options.

Second, when δ is small, Home does not value the promise of future payments and re-
quires a larger portion of her value of the forest to paid in the current period. By contrast,
when δ is large, Home values future payments more, thereby allowing Foreign to make
the payments in smaller installments. This second effect is captured in the (1− δ) term.

The following Corollary demonstrates that the second effect on δ dominates the first.
Specifically, it shows that x∗(N) is strictly decreasing in δ and provides upper and lower
bounds on the size of payments as a function of both δ and N.

Corollary 1. x∗(N) satisfies the following

(i) lim
N→∞

x∗(N) = π

(ii) lim
δ→0

x∗(N) = π

(iii) lim
δ→1

x∗(N) = 0

Here we see two surprising results. First, Foreign’s per period payments are capped
at π, even as the forest grows to an arbitrarily large size. When Home can expect to chop
down trees forever, they must be given the full value of a tree every period so as not to
consume in every period. This result can help explain why we observe that many real-life
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payments for ecological services seem so paltry. Second, this corollary demonstrates that
Home’s utility doesn’t always correlate with the size of payments. Though both payments
and Home’s utility are weakly increasing in the number of trees, Home’s utility strictly
increases with the discount factor even as payments decrease. As the limit of δ goes to 1,
payments shrink to 0, but Home’s utility increases to Nπ. By contrast, when the limit of
δ goes to 0, payments increase to π, but Home’s utility decreases to π.

Regardless of the value of δ or N, Home does not benefit when bargaining with For-
eign making offers. Though conservation generates a surplus, this remains entirely with
Foreign as Foreign makes the minimal required payments to guarantee Home their utility
from the consumption of trees. As a result, Home’s expected utility from conservation is
always equal to their market value for the forest.

4.2 Equilibrium Size of the Forest

Because the states play Markov strategies whenever an agreement is reached, once the
forest reaches a size in which Foreign chooses to pay for conservation, then the game
enters a steady state. There exists a unique cutoff number of trees N∗ such that Foreign
will always make an offer whenever the size of the forest is at or below that size. If at
time t = 0, N < N∗, then Foreign will immediately begin by making an acceptable offer
and no trees will ever be chopped down.

On the other hand, if at time t = 0, N > N∗, then the game will feature N − N∗

periods during which Foreign will not make acceptable offers and Home will choose to
chop down a tree. However, once Home has chopped enough trees so that the game
reaches N∗, Home will always choose to make acceptable offers. At this point, the game
will enter a steady state, and the Forest will remain at size N∗ in perpetuity. The following
Proposition formalizes this argument.

Proposition 4. (Forest Size I) There is a unique N∗ such that Foreign will never make acceptable
offers in a period with Nt > N∗ and will always make an offer in states with Nt ≤ N∗. N∗ is
given by

max
n
{uF(n)− uF(n− 1)

1− δ
≥ π} (10)

If no such n exists, then N∗ = 0 and Foreign never issues an acceptable offer x∗(N).

The following is the interpretation of this result. When the forest grows large, For-
eign’s marginal benefit from conserving an additional tree, represented by u(N)−u(N−1)

1−δ ,
decreases as the forest increases in size while the marginal cost of choosing to preserve
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Figure 1. Decreasing Marginal Benefits to Conservation: This figure depicts Foreign’s
increasing marginal utility to conservation as the forest shrinks in size. The dashed
line represents the constant marginal cost of choosing to preserve an additional tree in
perpetuity. Foreign will act to conserve all trees at or above the line, and will Home to
consume the Forest otherwise. Note that the solid and dashed lines need not intersect
at an integer.

the forest in the current period instead of the following period is constant and is repre-
sented by π, the amount that Home must be paid to preserve a tree. It follows that if the
marginal benefits to conserving an additional tree exceed the benefits of the current tree
count, then it must be justifiable to conserve the forest for any smaller tree count. Figures
1 and 2 provide an illustration of the intuition underlying these results.9

5 Relaxing Commitment

One might worry that we have assumed too much commitment on Home’s side. Even
though we only allow for one-period agreements, it is interesting to know what happens
when even these short-term agreements must be self-enforcing. Therefore, we now relax
the assumption that Foreign can make binding offers and allow Home to collect Foreign’s

9In both figures, π = 10, δ = 0.95, and u(N) = u(N − 1) + (1− 0.1N) with u(0) = 0.
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Figure 2. Equilibrium Utility: This figure depicts the utility to Foreign from taking var-
ious actions. The red line represents Foreign’s utility from allowing Home to consume
the forest as the forest shrinks in size. The blue line represents Foreign’s utility from
conserving the forest at different at each of the different possible sizes. The black line
represents the equilibrium path. Foreign does nothing, allowing Home to consume at
all tree counts to the left of the vertical dashed line and pays Home to conserve at all
tree counts at or to the right of the dashed line. The black line is dashed to the right of
the dashed line to emphasize that this off-the-equilibrium path because conservation of
the story at N∗ is a steady state.
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payment before deciding whether to chop down the tree. We show that countries can
continue to reach agreements to conserve the forest. Moreover, equilibrium behavior re-
mains qualitatively similar, with both countries playing Markov strategies whenever an
agreement is reached so that conservation is a steady state. However, Home can lever-
age its ability to defect to extract a greater share of the surplus from conservation from
Foreign. As a result, Foreign will conserve smaller forests.

Proposition 5. (No Commitment) There exists a unique subgame perfect equilibrium that is a
pure strategy Markov agreement equilibrium. If the two countries come to an agreement, then
Foreign will offer Home

x∗∗(N) = (1− δ)
Nπ

δ
(11)

and Home will accept and conserve the forest. Foreign’s utility from and agreement will be given
by

U∗∗F =
u(n)
1− δ

− Nπ

δ
(12)

and Home’s utility will be given by

U∗∗H =
Nπ

δ
(13)

The intuition that explains this result is similar to that underlying the commitment
case. The state with zero trees continues to be an absorbing state that provides both states
with a unique payoff of zero. When Home threatens to defect on agreements in the state
with one tree, Home can expect to receive π plus whatever payment x(1) made in that
period. It follows that Home should conserve when it expects a stream of payments that
is large enough to exceed the one-time payoff from defecting. Since Foreign will seek
to make the minimum payment required to prevent Home from chopping, Home will
receive a stream of payments that leaves it indifferent between chopping down the tree
and absconding with Foreign’s payment. This implies that countries have a fixed utility in
the case with one tree. As before, the proof uses an induction argument to generalize the
argument to an arbitrary number of trees N. Moreover, Foreign’s inability to commit to
making large offers in future periods rules out history-dependent strategies and requires
that the countries play pure Markov strategies whenever an agreement is reached.

Foreign’s payment to Home is then constructed by choosing a payment x(N) such that
the stream of payments it produces if accepted is at least as good as that from accepting
the payment, cutting down the tree, and moving to a state with N − 1 trees. In the state
where N = 1, this implies x(1) = (1− δ)π

δ . In turn, in the state with two trees, Home
must be indifferent between taking the payment, consuming a tree π, and moving to the
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state with one tree for a utility of δ π
δ or conserving and receiving δ

x(2)
1−δ . This implies that

x(2) = (1− δ)2π
δ is the smallest offer Foreign can make to achieve conservation. Equation

11 is a generalization of this argument to the case with N trees.

5.1 Implications for Payments

The presence of commitment problems presents two important substantive implications.
First, conservation becomes much more difficult. The following corollary presents how
comparative statics related to payments change as a result

Corollary 2. x∗∗(N) satisfies the following

(i) lim
N→∞

x∗∗(N) = ∞

(ii) lim
δ→0

x∗∗(N) = ∞

(iii) lim
δ→1

x∗∗(N) = 0

Whereas Corollary 1 showed that payments for conservation under binding agree-
ments were capped at π, the result above demonstrates there is no upper bound for the
payments Home requires to conserve with nonbinding agreements. The costs of pre-
serving large forests scales linearly with the cost of the forest and can grow infinitely
large. Moreover, payments to highly impatient states can require arbitrarily large sums
to achieve conservation, even when the number of trees is small. However, as Home be-
comes more patient the per period payment required to induce it to conserve the forest
remains small.

Second, as Foreign’s payments increase, so does Home’s utility from agreements. The
following corollary provides a formal statement of this result.

Corollary 3. When agreements do not commit Home to conserve, Home’s utility from conserva-
tion increases by

∆(N, δ) ≡ πN
δ
−

N

∑
i=1

πδi−1 (14)

which is strictly positive for all N and δ < 1 and equals zero for δ = 1.

The intuition for this result is simply that higher per period payments imply a higher
utility for Home, except for the case where δ = 1 since in both cases payments converge
towards zero as δ → 1. Because binding agreements only ever gave Home their market
valuation for the forest, it must be the case that any increase in utility that occurs with
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nonbinding agreements takes place because Foreign is splitting the surplus from conser-
vation with Home.

5.2 Equilibrium Size of the Forest

Increased payments for Home raise the cost of conservation and lead to smaller forests be-
ing preserved. As in the commitment case, the fact that countries play Markov strategies
whenever an agreement is reached implies that conservation is a steady state - if Foreign
is willing to make an offer that Home will accept and abide, then they will always do so.
Once again, this implies that there exists a unique N, denoted N∗∗, such that Foreign will
make acceptable offers if and only if Nt ≤ N∗∗. The following Proposition formalizes this
argument and provides a solution for N∗∗ that is directly comparable to N∗.

Proposition 6. (Forest Size II) There is a unique N∗∗ such that Foreign will never make accept-
able offers in a period with Nt > N∗∗ and will always make an offer in states with Nt ≤ N∗∗. N∗

is given by

max
n
{uF(n)− uF(n− 1)

1− δ
≥ Nπ

δ
− (N − 1)π)} (15)

If no such n exists, then N∗∗ = 0 and Foreign never issues an acceptable offer x∗∗(N).

The interpretation of this condition is similar to that of equation 10. The sole difference
is that the marginal cost of conservation has increased from π to Nπ

δ − (N − 1)π. It is
easy to check that this value is greater than π for all values of δ < 1. As demonstrated by
Corollary 3, this is because Foreign’s payments to Home increase for all δ < 1. This leads
to the following result.

Corollary 4. N∗ ≥ N∗∗

Intuitively, as the marginal cost of a tree increases, the number of trees Foreign will be
willing to pay to conserve must (weakly) decrease.

5.3 Leakage as Partial Commitment and Enforcement

Payment for ecosystem services is often predicated on public land holdings. However,
the amount of public and private forests and other resources varies from country to coun-
try; in the DRC nearly 100% of forests are public (Forest Resources and Context of Democratic
Republic of the Congo 2020), while in the United States, 60% of forests are privately owned
and manged (Forest Ownership Statistics 2018). The transfer of public land to private man-

17



agement can limit a government’s ability to commit to international conservation agree-
ments.

In this section, we show that a model of conservation with the potential for leakage -
where Home can only commit to conserving a percentage of the forest, and the remain-
der is available for Home to consume - is equivalent to a model of bargaining without
commitment. We refer to units that Foreign has contracted to conserve as protected and
the remainder as unprotected. Our results show that (i) conservation is possible even
when some trees remain unprotected, (ii) that Proposition 5 characterizes agreements
when trees remain unprotected, (iii) and that Proposition 6 again describes the number
of trees protected. By contrast, when Foreign is able to protect the entire forest, then the
agreements reached are the same as those in Section 4 where Foreign made offers with
commitment. Consequently, Home has strong incentives to ensure that any conservation
agreement is plagued by the potential for leakage.

Formally, we now assume that an offer from Foreign consists of two dimensions: a
transfer xt ∈ R+ and the number of trees to protect Q ∈ {0, 1, ..., Q(N̄t)} where Q̄(Nt) ≤
Nt. Furthermore, we assume for now that Q̄(Nt) is exogenous and that the potential for
leakage either exists Q̄(Nt) < Nt for all t or it does not Q̄(Nt) = Nt for all t. Home’s
action space is contingent on Q(Nt)

AH =

{accept, reject} × {consume, conserve} if Qt < Nt

{accept, conserve}, {reject, consume}, {reject, conserve} if Qt = Nt
(16)

The following Proposition provides a formal statement of the result

Proposition 7. (Leakage) There exists a unique subgame perfect equilibrium that is a pure strat-
egy Markov agreement equilibrium:

(i) If Q̄(Nt) = Nt and Nt ≤ N∗ as defined in equation 10, then Foreign sets Q(Nt) = Nt and
offers Home a transfer of x∗ as defined in equation 9.

(ii) If Q̄(Nt) < Nt and Nt ≤ N∗∗ as defined in equation 15, then for any Q(Nt) Home offers
Foreign a transfer of x∗ as defined in equation 11.

(iii) Otherwise, no agreement can be reached in which Foreign sets x(N) > 0 and Home con-
sumes.

The following is the intuition underlying the result. The potential for leakage Q̄(Nt) <

Nt for all t is equivalent to the game with no commitment. However, when Q̄(Nt) = Nt,
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it could theoretically be possible for Home to reject demands and consume when Foreign
sets Q̄(Nt) = Nt in an attempt to induce Foreign to only make the nonbinding offers that
would increase Home’s utility. The crux of the proof is to show that Home stands to gain
nothing by rejecting such an offer because nonbinding agreements were already designed
to keep Home indifferent between consuming a tree in the current period and waiting for
an offer in the next period. For example, consider the case with one tree. Recall from
Proposition 5 that with nonbinding agreements, Home can extract a stream of payments
that sum to a value of π

δ from Foreign. Clearly, Home is indifferent between consuming
the tree and waiting a period to receive that stream of payments. However, that must
mean that Home would also be willing to accept a stream of payments starting in the
current period that guarantee it a utility of π. The proof extends this logic to N trees
using an inductive argument.

As the above discussion makes clear, Home’s utility is strictly lower when Foreign is
allowed to offer conservation agreements for the entire forest. However, this does not
necessarily mean that Home has had no recourse other than to accept an offer from For-
eign that binds it to conservation. As a sovereign state, Home may be able to exclude
certain sections of a forest from inclusion in agreements by handing over their ownership
to a cooperative private owner or other means. Therefore, it is possible that Home can set
Q̄(Nt). This leads to the following Corollary.

Corollary 5. If Home can set Q̄(Nt), then they will always select Q̄(Nt) < Nt

This result suggests that leakage may be an endogenous institutional feature of con-
servation, designed by the owner to increase its share of the surplus from cooperation.

6 Home Setting Payment

Leakage is not the only means by which developing countries can seek to increase their
share of the bargaining surplus. Recently, Brazil, Indonesia, who together own more than
50 percent of the world’s tropical rainforests, have launched talks to form a coalition of
rainforest owning countries (Greenfield 2022). Dubbed the “OPEC of rainforests", this
coalition is aimed at increasing their bargaining power in the international negotiations
on climate change and conservation and attaining more financial support from the rich
nations for preserving their forests. What happens when the resource rich countries take
the initiative in bargaining for conservation?

To answer this question, now consider how the game changes when Home is allowed
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to make demands instead of Foreign. The structure of the stage game is now as follows:
Home makes a demand x of Foreign that Foreign must pay for Home to conserve the
Forest. If Foreign accepts the demand, then it pays a transfer x to Home. As in the
previous section, we assume that Foreign cannot ensure that Home will be committed
to the agreement. If Foreign rejects Home’s offer, then Home can then choose whether
to chop down a section of the Forest. Under this protocol, Home’s utility is equal to
that which it achieved under nonbinding agreements, though Foreign’s is always weakly
smaller.

We begin by restricting our attention to Markov Perfect Equilibria in mixed strate-
gies.10 Such equilibria feature Home making a demand, Foreign accepting the demand
with positive probability, and then Home chopping down the forest with positive proba-
bility if its demand is rejected. Let p(x, n) and q(x, n) respectively denote the probability
that Foreign accepts an offer and the probability that Home chops conditional on a re-
jection. The following Lemma characterizes the latter two strategies and both countries’
expected utilities as a function of the number of trees and Home’s demand x.

Lemma 1. (Mixture) In any mixed strategy Markov equilibrium:

(i) p(x, N) = Nπ(1−δ)
xδ

(ii) q(x, N) = x(N)(1−δ)
u(N)−δx−(1−δ)[u(N−1)+δV(N−1)]

(iii) UH(N) is given by equation 13: U∗∗H = Nπ
δ

(iv) UF(x, N) is given by u(n)−x
1−δ

(v) x ∈
[

Nπ(1−δ)
δ , u(n)− (1− δ)∑N

i=2 u(i− 1)δN−i
]

The intuition underlying the result is straightforward. Conditional on a demand being
rejected, Home mixes over whether to consume a tree in the present period or wait to
reissue the demand in the next period. The larger the demand, the more tempting it is to
wait to reissue it. To ensure that Home is indifferent between chopping and not, Foreign
accepts higher demands with lower probabilities. Regardless of the size of the demand,
at the start of every period, before Home learns whether or not Foreign will accept its

10The online appendix discusses the robustness of this assumption. Following Harstad (2016), we apply
a renegotiation proofness refinement and show that the only equilibria that survive retain the key qual-
itative features of Markov Perfect Equilibria we characterize. Namely, we show that (i) agreements can
only be reached when the countries play mixed strategies, (ii) Home’s utility from agreements remains the
same, and (iii) the set of states (i.e. the number of trees) for which an agreement is reached with positive
probability is identical regardless of whether an equilibrium is in Markov strategies or not.
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demand, it has a utility of π
δ . This is the same amount that Home received when Foreign

had proposal power but could not propose binding agreements.
As before, this larger surplus comes at Foreign’s expense. How much worse off For-

eign is depends on the demands that Home issues in each state - since Foreign must be
indifferent as to whether or not it accepts a demand, its utility can be expressed as

U∗F(x|N) =
u(n)− x

1− δ
(17)

Clearly, the higher the demand, the lower Foreign’s utility. The highest possible demand
Home can make leaves Foreign with none of the bargaining surplus. Foreign accepts the
offer with a low probability, and Home chops with probability 1 if its offer is refused.
The lowest possible demand that Home can make is the minimal possible demand is
that which allows its utility to sum up to U∗∗H (N) if Foreign were to accept that offer
every period with probability 1. This is the same demand Foreign makes when it has
proposal power and can issue non-binding agreements. It follows that Foreign’s utility
when Home has proposal power must be weakly smaller than its utility in equation 12
when Home had proposal power and could issue nonbinding agreements.

There are strong normative reasons in favor of Home making smaller demands. First,
Foreign’s utility is strictly decreasing in the size of Home’s demand. Second, a lower util-
ity for Foreign at any state is more likely to lead to a smaller forest. This is because Home
is more likely to consume a tree when it makes large demands to balance against Foreign’s
incentive to free-ride and avoid making payments. Third, Home’s utility U∗∗H is indepen-
dent of the size of its demands, implying that the downsides of larger demands are not
offset by Home receiving a larger share of the bargaining surplus. However, there is no
guarantee that the countries will play an equilibrium that maximizes Foreign’s utility and
leads to steady-state conservation.

6.1 Optimal X and the Size of the Forest

Similarly to when Foreign was making offers, the equilibrium in Markov strategies gener-
ates a unique cutoff N∗H such that conservation is only achieved with positive probability
at several trees N ≤ N∗H. If the game begins at any N > N∗H no agreement is reached and
Home consumes a tree each period. Once a sufficient number of trees is consumed and
the state becomes N∗H, or alternatively, if the game begins at an N ≤ NH

∗ , then Foreign
can make demands that Foreign will accept with positive probability. However, unlike
the case when Foreign was making offers, there is no guarantee that the game will enter

21



a steady state. This is because for virtually any set of parameters, there is a range of de-
mands Home can make and for which all but the lower bound can be rejected and lead to
Home consuming with positive probability. The following Proposition provides a formal
characterization of this result.

Proposition 8. (Forest Size III) There exists a unique N∗H such that Home will never make an
acceptable offer in a period in which Nt > N∗H. At any N ≤ N∗H, Home will make a demand
from the range [Nπ(1−δ)

δ , uF(n)− (1− δ)∑N
i=2 uF(i− 1)δN−i] and will have Foreign accept the

demand with positive probability. N∗H is given by

max
n
{uF(n)

1− δ
−

N

∑
i=2

uF(i− 1)δN−i ≥ nπ

δ
} (18)

This condition is the first time that accepting and locking in payments and forest size
is better for Foreign than just letting Home consumer the whole forest. The following is
the intuition underlying the result. Absent any agreements, Home’s utility for consuming
the forest is given by ∑N

i=1 πδi−1. However, if an agreement is reached in the state with
N trees, then Home’s utility increase to U∗∗H (N). Therefore, Home benefits from reaching
an agreement with as large a number of trees as possible. Since Home’s utility is inde-
pendent of x, Home makes small demands that leave Foreign with a surplus of utility
from conservation. N∗H is the largest number of trees at which Foreign’s utility from an
agreement is larger than their utility stream from allowing Home to consume the entire
forest. This implies that conservation is achieved and a deal reached as early in the game
as possible.

This is not Foreign’s preferred outcome. Without loss of generality, consider Foreign’s
equilibrium utility as defined in equation 12 at the lower bound of x(N) (as given by 12).
Foreign’s utility is concave in N, the marginal benefits of conservation u(N)

1−δ are decreas-
ing in N, while the costs of conservation Nπ

δ increase at a constant rate. It follows that
Foreign’s utility could be increased by delaying agreements and accepting the minimal
demand at state N∗∗ ≤ N∗H after allowing Home to consume additional trees. Figure 3
illustrates this point.

However, Home can induce Foreign to come to an agreement at an earlier date. Though
Foreign would like to receive the same low demand x(N) = Nπ(1−δ)

δ at N̂∗∗, Home is free
to make larger demands at lower levels of trees. Specifically, Home can always select a de-
mand that ensures that Foreign does no better from rejecting a demand at N∗H. Home can
credibly commit to this strategy since its utility is independent of x. As a result, Foreign
cannot improve their utility by rejecting demands at N∗H and this off-path ”punishment
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strategy” is never achieved in arrived at. Figure 4 depicts the equilibrium path utilities
with the off-path utilities if Foreign rejects Home’s demand at N∗H.

This result has a similar intuition to that in Harstad (2022). In that paper, Harstad
shows that if the division of the surplus from trade is conditioned on the stock of trees re-
maining, then it is possible for free trade agreements to disincentivize the transformation
of forests into arable land necessary for the production of a trade good. The recurrence
of this logic is somewhat surprising given the different setups of the models - in Harstad
(2022) it is the conservationist who conditions payments on the stock, whereas in our re-
sult it is the resource owner conditioning on the stock to incentivize the conservationist
to reach agreements earlier. The fact that the strategic logic in both models operates simi-
larly despite different structures, likely implies that this is a robust feature of conservation
agreements.

7 Markov Equilibrium with Price Shocks

In May 2022, the DRC announced that it would begin to auction large swathes of rain-
forest and peatland for gas and oil exploration. This represented a departure from the
DRC’s previous policy, which had promoted conservation and attracted large financial
commitments from international actors. However, the Russo-Ukrainan war, launched
two months earlier, led to sharp increases in energy prices and prompted the DRC to
reconsider its pro-environmental policies (Maclean and Searcey 2022; Wong 2022).

In this section, we consider how the equilibrium of the PES game changes in response
to price shocks. To do so, we return to the model in section 4 where Foreign makes offers
that commit Home and introduce a price shock at the start of every period. We assume
that the price shock takes the form of a publicly observable value for πt that is indepen-
dently drawn from the set {π̄, π} where π̄ > π. Let p and 1− p respectively denote the
probability that π(N) or π̄(N) is drawn. We show that the equilibrium remains qualita-
tively similar to the case with constant prices. The only exception is that there can now
be multiple thresholds N∗ for different price points, a N∗(π) for when the price is low,
and smaller N∗(π̄) for when the price is high. Though consumption will slow once the
forest reaches N∗(π), it will not stop shrinking until the Forest reaches size N∗(π̄). As
a result, shifting prices lead to smaller forests than does a constant price with average
π = pπ + (1− p)π̄.
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Figure 3. Foreign’s Preferences over Agreements: The red depicts Foreign’s utility for
allowing Home to consume the entire forest. It also represents Foreign’s utility for
accepting the maximal demand made by Home. The blue line represents Home’s utility
when Home makes the minimal offer and the entire forest is preserved. Foreign’s utility
from conservation is concave in the number of trees, implying that Foreign will prefer
to conserve at lower forest counts. This is represented by N∗∗. However, Home prefers
to reach an agreement as soon as possible and can credibly commit to demand the entire
surplus in the future. Therefore, an agreement is reached as soon as the blue line goes
above the red one at N∗H.
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Figure 4. The Equilibrium Path: This figure depicts Foreign’s utility at each stage of the
equilibrium path. Initially, Home cannot make a demand that Foreign would accept
and consumes each period. With 7 trees, Home makes the lowest demand it can and
Foreign accepts and the game enters a steady state. This is supported by the off-path
behavior to the right of the dashed line, in which Home makes the maximal demand it
can of Foreign.
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7.1 Equilibrium Strategies

Equilibrium strategies remain similar to the model with constant prices. Any subgame-
perfect equilibrium must be a pure startegy markov agreement equilibrium where agree-
ments feature Foreign making the minimum offer each period that keeps Home just in-
different between chopping and not, and Home receives none of the surplus from conser-
vation. There are, however, a few minor adjustments that need to be made to account for
the shifting prices.

First, in the model with constant prices, Home always chose to consume absent a
payment since there was never any benefit to delay. With price shocks, Home may choose
to delay consumption in periods in which πt = π to await periods with higher prices for
trees. The following Lemma defines the conditions under which Home will choose to
consume a tree absent any positive offer from Foreign

Lemma 2. If Foreign does not make positive offers in a given state with N trees, then Home will
consume the forest when πt = π if and only if

π ≥ δ(1− p)π̄
1− δp

(19)

The lemma shows that Home will delay consumption in periods in which πt = π

whenever doing so will be beneficial. The left-hand side represents the benefits of con-
sumption of the tree in the current period. The right-hand side of equation 19 represents
the benefit of delaying consumption until the πt = π̄.

Second, strategies are made conditional on the current value of π. Let x(πt, N) denote
the offer that Foreign makes in a period with price πt and N trees. The following lemma
states that Foreign will never provide Home with more than is necessary to consume in
the current period. Since Foreign does not consume in periods in which condition 19 does
not hold, Foreign will make no payment in such periods. As a result, Home’s utilities
remain unaffected by whether the parties reach an agreement.

Lemma 3. If the condition in equation 19 is satisfied, then

(i) Foreign will either set x(πt, N) = 0 and Home will consume the forest or Foreign will set

x(πt, N) = πt − δN[pπ + (1− p)π̄] (20)

and Home will accept the offer.
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(ii) Home’s utility for being in the state with N trees is given by

VH(N) =
N

∑
i=1

δi−1[pπ + (1− p)π̄] (21)

prior to the realization of πt

If the condition in equation 19 does not hold, then conservation requires

(iii) Foreign will always set x(π, N) = 0 and Home will not consume.

(iv) If πt = π̄, then Foreign will either set x(π̄, N) = 0 and allow Home to consume or Foreign
will set

x(π̄, N) = (1− δ)
N

∑
i=1

δi−1(1− p)i−1π̄

[1− δp]i
(22)

and Home will accept the offer.

(v) Home’s utility for being in the state with N trees is given by

V(N) =
N

∑
i=1

δi−1
[

1− p
1− δp

]i
π̄ (23)

prior to the realization of πt.

The following is the intuition underlying the result. As in the case with constant
prices, Foreign can never commit to paying any more than the minimum required for
Home not to consume the forest. The proof demonstrates that any strategy that relies on
Foreign attempting to delay payments in periods in which πt = π (or πt = π̄) by making
smaller offers than those stipulated in equations 20 or 22 and then increasing payments
in periods in which πt = π̄ (or πt = π) do not survive the one-shot deviation principle.
Simply put, Foreign cannot commit to paying higher prices than those listed in equations
20 or 22 and would simply deviate to those prices at the earliest possible opportunity.
Home will always accept these lower offers, thereby leaving Foreign strictly better off.
This implies that the only subgame-perfect equilibrium strategy for periods in which an
agreement is reached is a Markov strategy in which Foreign either makes the minimum
payment in that period to prevent Home from chopping or does not pay at all.

7.2 Size of the Forest

As in the case with constant prices because the two countries play Markov strategies
whenever an agreement is reached, once Foreign is willing to pay to conserve the forest
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in a certain state, she will always be willing to do so. However, because the state now
depends on both the number of trees and the value of πt, conservation is no longer neces-
sarily a steady state: Foreign may be willing to preserve in a state with N trees if πt = π

but not if πt = π̄. As a result, there exist two thresholds N∗(π̄ and the weakly larger π)

that give the game a clear equilibrium trajectory. Whenever N > N∗(π), Foreign will be
unwilling to make offers capable of conserving the forest regardless of the value of πt.
However, once N enters the range of (N∗(π̄, π)], then Foreign will be willing to conserve
the forest only in states in which πt = π and allow Home to consume otherwise.11 Fi-
nally, in any state in which N ≤ N∗(π̄), Foreign will always make an offer that Home
will accept for any value of πt and the forest will enter a steady state.

The following Proposition provides a formal characterization of this result.

Proposition 9. (Forest Size IV) There exist unique values for N∗(π̄) and N∗(π) such that For-
eign will never make acceptable offers in states in which N > N∗(πt) and will always make
acceptable offers in states with N ≤ N∗(πt) for the appropriate value of πt.

(i) N∗(π̄) is given by the largest value of N for which the following equation holds

u(N)− u(N − 1)
1− δ

≥ π̄ (24)

or by 0 if the above is not satisfied for any positive value of N.

(ii) Let N′ := N − N∗(π̄). Then N∗(π) is given by the largest value of N for which the
following equation holds

u(N)− 1{N′≥2}u(N − 1)
1− δ

1− δp
− 1{N′≥3}(1− δ)

N′−2

∑
i=1

δi(1− p)i

(1− δp)i+1 u(N − i− 1)

1{N∗(π̄)>0}
δN′(1−pN′−1)

(1− δp)N′−1 u(N∗(π̄)) ≥ π − δN[pπ + (1− p)π̄]

−1{N≥2}(1− δ)
N−1

∑
i=1

δi(1− p)i−1

(1− δp)i π + 1{N≥2}(1− δ)
N−1

∑
i=1

δN(1− p)i−1

(1− δp)i [π + (1− p)π̄]

−1{N∗(π̄)>0}
δN′(1− p)N′−1

(1− δp)N′−1 [pπ + (1− p)π̄][1− δN∗(π̄)]

(25)

or by N∗(π̄) if it is the above does not hold for any N > N∗(π̄).
11Note that N∗(π) is only a useful analytical concept if 19 holds. Otherwise lemma 3 states that Home

never consumes when πt = π so that N∗(π) = N for all N.
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The intuition for the proposition is similar to that of Proposition 4, with some minor
adjustments to account for the changes in the value of π. Part (i) states that Foreign
will conserve the forest in periods when πt = π whenever the benefit of preserving an
additional tree in perpetuity, represented by the left-hand side of equation 24, is equal
to the marginal cost of a conserving an additional tree (π̄). As in 4, the fact that u(·) is
concave in N, implies that it becomes more difficult to satisfy this condition as the forest
gets larger and ensures the existence of a unique N∗(π̄). Moreover, comparing equation
24 to equation 10 from Proposition 4, it is easy to see that the inequality in equation 24 is
more restrictive. This implies that price volatility leads to smaller forests, when compared
to a constant price with the average π = pπ + (1− p)π̄; conservation will not enter a
steady state until Foreign is willing to conserve an additional tree in perpetuity at the
larger marginal cost π̄.

Part (ii) sets out the conditions required for Home to conserve the forest when πt = π.
The left-hand side of equation 25 represents the marginal benefits to Foreign of conserving
the Forest in the current period. Since conservation no longer leads to a steady state,
Home now accounts for the fact that, even though it may conserve in the current period,
the forest will continue to be consumed whenever πt = π̄. Similarly, the right-hand side
of equation 25 represents the marginal cost of conservation, accounting for the fact that
Foreign will make smaller payments as the forest is gradually consumed until a steady
state is reached. The proof of the Proposition shows that despite these complications, that
it becomes more difficult to satisfy equation 25 as N′ grows larger, thereby implying that
it remains more difficult to conserve larger forests and that N∗(π) is unique.

Comparing equation 25 to equation 10, we can see that price volatility reduces the
cost of conservation when the price is low. This occurs both because πt = π < π, but
also because Home has a weaker incentive to consume when she expects that delaying
consumption might increase the value of π. For example, consider equation 25 when we
set N′ = 1,

u(N(∗(π̄) + 1)− u(N(∗(π̄)) > π(1− δp)− δ(1− p)π̄

It is straightforward to verify that the right-hand side of the equation is smaller than
(1− δ)π thereby implying that the potential of a potential increase in the value of π in
future periods reduces the price of conservation in the current period.

29



8 Conclusion

Payment for ecosystem service programs like REDD+ present two competing goals: con-
servation of critical ecological resources and the desire to adequately compensate the re-
source owners - who are often from the Global South - for forgoing the consumption of
those resources crucial to their development. In this article, we maintain that when de-
signing agreements, there exists a trade-off between these two goals. We show that when
the conservationist can offer binding agreements, the resource owner receives none of the
surplus generated by conservation. Moreover, it is possible this arrangement maximizes
the size of the forest that is conserved. However, when leakage is present, the forest size
will be maximized by granting the resource owner the power to dictate the terms of agree-
ments and both countries can receive a share of the bargaining surplus. Unfortunately,
under these circumstances we have shown that conservation may not be a steady state,
such that the forest will shrink even after conservation is successfully implemented at
one time. Though, it should be noted that this may always be a feature of conservation
agreements if the market price of forests fluctuates.

Much work remains to be done to understand the strategic considerations underlying
conservation agreements. First, this article considered a complete information case. If
states had private valuations for their utility for conservation, agreements might be more
difficult to negotiate. A particularly interesting case would be that in which the resource
owner also has private information regarding their valuation for conservation relative to
consumption of the forest. Second, there exists empirical work that attempts to quan-
tify the costs required to prevent deforestation. Most of this research is conducted at the
sub-national level, where for example, economists have tried to determine the policies
necessary to deter private actors from engaging in deforestation (Souza-Rodrigues 2019)
or quantify the social cost of deforestation (Assunção et al. 2023). Future work should
consider the costs of preventing deforestation for international actors while accounting
for bargaining dynamics. Finally, conservation agreements need not only be reached for
forests. However, other environmental resources might have different characteristics that
make strategic dynamics more complex. For example, while deforestation uses CO2 emis-
sions as a standardized measure to quantify the value of conservation agreements, it is
not immediately obvious how one would measure the value of conserving endangered
species.
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1 Proofs of Results in the Main Text

1.1 Proof of Proposition 1

We will show that the set of countries’ payoffs for being in any given state is a singleton
and independent of history. To prove this, we show that any postulated strategy that does
not guarantee this payoff to both players cannot survive the one-shot deviation principle
(Fudenberg and Tirole 1991). The general proof strategy is proof by induction.

The proof will require that we consider history-dependent strategies. Let ht denote
the history at time t and let sF(Nt|ht) = F(x|Nt|ht) denote the distribution of Foreign’s
possibly history-dependent offer. Finally, let VH(1, sF(Nt|ht)|N, ht+1) denote Home’s con-
tinuation value in case of acceptance and VH(0, sF(Nt|ht)|NT − 1, h′t+1) denote Home’s
continuation value in case of rejection. We begin by showing that then N = 1 Home’s
continuation value in any SPE is π.

Lemma A. 1. If Nt = 1, then Home’s continuation value is any SPE is π.

Let
¯
VH(1|1, ht) be Home’s minimum continuation value when she accepts the offer

xt(1, ht). Since Home can always consume, she can guarantee herself π, so
¯
VH(1|1, ht) ≥

π.
Let V̄H(1|1, ht) be Home’s maximal continuation value at an arbitrary history ht. Sup-

pose V̄H(1|1, ht) > π. This inequality can be true if and only if Foreign’s expected pay-
ments to Home exceed π. Assuming that Home’s strategy at history ht has it choosing to
chop down the tree in k periods, the inequality holds if

t+k

∑
τ=t

δt−τE[xτ(1|1, hτ)] > π − δkπ (A. 1)

Foreign’s expected utility of this strategy is

t+k

∑
τ=t

δt−τ(uF(1)− E[xτ(1|1, hτ)]).

However, in period t, Foreign can reduce the payments. That is, since the sum of these
payments is strictly greater than π, there exists a x′t such that x′t < E[xt] and satisfies

t+k

∑
τ=t

1τ 6=tδ
t−τE[xτ(1|1, hτ)] + x′t > π − δkπ (A. 2)

Foreign is strictly better off making this smaller payment and Home will continue to
prefer to play their strategy and wait at least until k before chopping. By the one-shot
deviation principle, there is no SPE where V̄H(1|1, ht+1) > π and V̄H(1|1, ht) ≤ π. But
since

¯
VH(1|1, ht) ≤ V̄H(1|1, ht), we have VH(1|1, ht) = π. �

Lemma A. 2. If Nt = N, then Home’s continuation value is any SPE is ∑N
i=1 πδi−1.
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Let VH(N − 1) = ∑N−1
i=1 πδn−1. We want to show that VH(N) = π + δV(N − 1) =

∑n
i=1 πδN and will follow a similar proof strategy as Lemma A. 1

Let
¯
VH(1|N, ht) be Home’s minimum continuation value when she accepts the offer

xt(N, ht). Given the inductive hypothesis,
¯
VH(1|N, ht) ≥ π + δVH(N − 1). If this were

not the case, then Home could deviate from their strategy, consume, and achieve this
continuation value.

Let V̄H(1|N, ht) be Home’s maximal continuation value at an arbitrary history ht after
accepting offer xt(N, ht). Given the inductive hypothesis, V̄H(1|N, ht) ≤ π + δVH(N −
1). Suppose not. That is, suppose that V̄H(N, ht) > π + δVH(N − 1). Once again, this
inequality is true if and only if Foreign expected payments to Home exceed π. Assuming
that Home’s strategy at history ht has it choosing to chop down the tree in k periods, the
inequality holds if

t+k

∑
τ=t

δτ−tE[xτ(1|Nt, hτ)] > [1− δk][π + VH(N − 1)] (A. 3)

Foreign’s expected utility of this strategy is

t+k

∑
τ=t

δt−τ(uF(N)− E[xτ(1|Nt, hτ)])−VF(N)δt[1− δk]

However, in period t, Foreign can reduce the payments. That is, since the sum of these
payments is strictly greater than π + δV(N − 1), there exists an x′t such that x′t < E[xt]
and satisfies

t+k

∑
τ=t

δτ−t1τ 6=tE[xτ(1|hτ)] + x′t > [1− δk][π + VH(N − 1)] (A. 4)

Foreign is strictly better off making this smaller payment and Home will continue to
prefer to play their strategy and wait at least until k before chopping. It follows that by
the one-shot deviation principle V̄H(1|N, ht) ≤ π + δV(N − 1). But since

¯
VH(1|N, ht) ≤

π + δVH(N − 1), we have VH(1|N, ht) = π + δV(N − 1)=∑N
i=1 πδi−1.

Since VH(1|1, ht) = π, by induction, if Nt = N, then Home’s continuation value is any
SPE is ∑N

i=1 πδi−1 �
Together, these lemmas demonstrate that Home’s utility will be given by equation

6. To show that Foreign’s utility will be given by 5 it is only necessary to note that if
the countries enter into an agreement, Foreign’s utility must be that which they obtain
from conservation minus any payments that they make. The lemmas require that these
payments be given by 6. �

1.2 Proof of Proposition 2

Lemma A. 3. Any SPE equilibrium offer x(1|ht) = π(1− δ).

Home will accept an offer x(1|ht) if and only if x(1|ht) + δV(1|ht) ≥ π otherwise
Home will prefer to reject the offer and chop. Per the previous lemma, V(1|ht) = π,
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implying that x(1|ht) ≥ π(1− δ). Following a similar logic to that in the previous lemma,
this inequality must hold strictly. Suppose not, that is, suppose that there were an offer
x(1|ht) + δπ > π. Then there would exist an x(1|ht)′ < x(1|ht) for which x(1|ht)′+ δπ >
π. Foreign will strictly prefer to deviate this lower offer and Home will still be willing
to accept it. It follows that any offer x(1|ht) > π(1 − δ) cannot survive the one-shot
deviation principle.

Following a similar logic, Home strictly prefers to reject and consume than reject and
conserve. This is because Home would only take a current period payoff of 0 instead of
π if it expected Foreign to play a history-dependent strategy to offset the loss from con-
sumption with an offer greater than x(1|ht) = π(1− δ) in future periods. However, for
the reasons stated above, such an offer does not survive the one-shot deviation principle.
This suffices to prove the claim.�

Lemma A. 4. Any SPE equilibrium offer x(N) = V(N)(1− δ).

For any state N, Home will accept an offer x(N|ht) if and only if x(N) + δV(N) ≥
π + δV(N − 1) otherwise Home will prefer to reject the offer and chop. Following a
similar logic to that in the previous lemma, this inequality must hold strictly. Suppose
not, that is, suppose that there were an offer x(N) + δV(N) > π + δV(N− 1). Then there
would exist an x(N)′ < x(N) for which x(N)′ + δV(N) > π + V(N − 1). Foreign will
strictly prefer to deviate this lower offer and Home will still be willing to accept it. It
follows that any offer x(1|ht) > π(1− δ) cannot survive the one-shot deviation principle.
This suffices to show that the equality holds strictly.

To show that x(N) = V(N)(1 − δ), just note that π + δV(N − 1) = V(N), so that
rearranging x(N) + δV(N) = π + δV(N − 1) we obtain the desired expression. Finally,
note that as in the previous lemma, Home strictly prefers to reject and consume than reject
and conserve, since the history-dependent offers necessary to sustain such a startegy do
not survive the one-shot deviation principle. �

1.3 Proof of Proposition 3

Follows directly from the proof of Proposition 2 �

1.4 Proof of Proposition 4

Following Proposition 3, in any given state the minimal acceptable offer that Foreign can
make is given by x(N) = (1− δ)∑N

i=1 πδi−1. In any given state with N > 1 trees, Foreign
can always decide to either preserve the Forest at the current state for a discounted ex-
pected utility of u(N)−x(N)

1−δ , or they can choose to allow Home to chop down a section of
forest and begin to pay Home to conserve in the following period for a utility of

u(N − 1) + δ
u(N)− x(N)

1− δ
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Comparing these two quantities, Foreign will choose to conserve in the current state as
opposed to delaying for one more period before doing so whenever it is the case that

u(N)− x(N)

1− δ
> u(N − 1) + δ

u(N − 1)− x(N − 1)
1− δ

Substituting in for x(N) and x(N − 1) we have

u(N)

1− δ
−

N

∑
i=1

πδi−1 > u(N − 1) + δ
u(N − 1)

1− δ
− δ

N−1

∑
i=1

πδi−1

Rearranging, we can produce the expression in equation 10.
Inspecting the result, we find that while the right-hand side of equation 10 is a con-

stant, the left-hand side of the equation is decreasing in N. This implies that if the equa-
tion is satisfied for any given N it must be satisfied for any number smaller than N. Sim-
ilarly, if the equation does not hold for a given N, it cannot hold for any number larger
than N. It follows that the largest N for which equation 10 is satisfied must be unique and
have the properties described in Proposition 4. �

1.5 Proof of Proposition 5

The proof is once again by induction and follows a similar structure to that of Propositions
1 and 2. However, there are some subtle differences to account for the absence of binding
agreements.

Lemma A. 5. Let Nt = 1. There is a unique SPE in which Foreign makes positive offers. In this
case Foreign plays a Markov strategy and always offers

x∗∗(1) =
π(1− δ)

δ
(A. 5)

and Home accepts and conserves. As a result, Foreign has a unique payoff from agreements

VF(1) =
u(1)
1− δ

− π

δ
(A. 6)

and Home has the unique payoff
VH(1) =

π

δ
(A. 7)

Suppose Nt = 1 and at history ht Foreign makes a sequence of proposals {xi}∞
i=t. Since

consuming by Home ends the game, these sequences represent complete contingent plans
at each history, should the game continue for any length.

By subgame perfection, Home will accept any stream of payments that sum to more
than the current value of consumption. This implies that when Nt = 1, Home will accept
any offer xt+k at history ht+k and conserve if and only if

∞

∑
τ=t+k

δτE[xτ] ≥ π + xt+k. (A. 8)
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Given this requirement, it is easy to see that Foreign playing {xi}∞
i=t={

1−δ
δ π}∞

i=t and
Home always accepting and not consuming is a SPE with Nt = 1 as this offer causes
equation A. 8 to hold with equality, thereby maximizing Foreign’s utility at each t.

All that remains to show is that there are no SPE sequences of pure or mixed strate-
gies {xi}∞

i=t from history ht such that xt+j 6= x∗∗(1). To see this, suppose that Foreign’s
offer strategy (possibly mixed) that satisfies the condition of equation (A. 8) and that for
some j > t, Foreign chooses a x̂j > x∗∗(1). For Foreign not to be strictly worse off than
offering x∗∗ at every history, it must be the case that in the future Foreign makes an offer
Ê[xk] < x∗∗(1). However, at hj, Home’s SPE strategy has it take the payment and con-
sume because the continuation value must be less than required by equation A. 8. This
makes Foreign strictly worse off than offering x∗∗(1) at j.

Alternatively, suppose that Foreign’s offer strategy satisfies the condition of equation
(A. 8), but for some j > t, Foreign chooses a x̂j < x∗∗(1). To ensure that this strategy
satisfies equation (A. 8), Foreign must now play a strategy such that at time k E[x̂k] >
x∗∗(1) at a time k > j. That is, to offset the lower offer in an earlier period, a larger offer
must be made later. However, such a strategy does not survive the one-shot deviation
principle as Foreign would strictly prefer to deviate to offering x∗∗(1) at time k, and Home
must still accept, making it a profitable deviation. �

Lemma A. 6. Let Nt = N. There is a unique SPE in which Foreign makes positive offers. In this
case, Foreign plays a Markov strategy and always offers

x∗∗(N) =
Nπ(1− δ)

δ
(A. 9)

and Home accepts and conserves. As a result, Foreign has a unique payoff from agreements

VF(N) =
u(N)

1− δ
− Nπ

δ
. (A. 10)

and Home has the unique payoff

VH(N) =
Nπ

δ
. (A. 11)

The proof is by induction. We therefore assume that in the state with N − 1 trees, For-
eign offers makes an offer of x∗∗(N− 1) = (N−1)π(1−δ)

δ and Home accepts and conserves.
This leads to a steady state where Foreign has utility

VF(N − 1) =
u(N)

1− δ
− (N − 1)π

δ
.

and Home has utility

VH(N − 1) =
(N − 1)π

δ
.

We need to show that Foreign’s strategy is given by equation 11, and that Foreign’s and
Home’s utility are given by equations 12 and 13 respectively.

Once again, subgame perfection requires that Home accept any stream of payments
that sum to more than the current value of consumption and its continuation value. For
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Nt = N, Home will accept and any offer xt+k at history ht+k and will conserve if and only
if

∞

∑
τ=t+k

δτE[xτ] ≥ π + xt+k + VH(N − 1) (A. 12)

where the value of VH(N − 1) is given by the inductive hypothesis.
It is again simple to check that Foreign playing x∗∗(N) as defined in equation 11 and

Home always accepting and conserving constitute an SPE as this offer causes equation A.
12 to hold with equality thereby maximizing Foreign’s utility at each t.

Again, it only remains to show that there are no SPE sequences of pure or mixed
strategies {xi}∞

i=t from history ht such that xt+j 6= x∗∗(N). As before, to see this suppose
that Foreign is playing an offer strategy (possibly mixed) that satisfies equation A. 12 and
that for some j > t, Foreign chooses a x̂j > x∗∗(N). For Foreign not to be strictly worse off
than offering x∗∗ at every history, it must be the case that in the future Foreign makes an
offer E[x̂k] < x∗∗(N) at a time k > j. However, such a strategy does not survive the one-
shot deviation because at time k, Home has a strictly profitable deviation to accepting the
offer made at time k− 1 and then consuming the tree. This is easily shown by observing
that for Home not to consume it must be the case that Foreign’s offer satisfies

xt + δ[E[xt+1] + π + VH(N − 1)] ≥ xt + π + δVH(N − 1)

Recall that the right-hand side of this equation is equal to the stream of all Foreign’s future
payments when equation A. 12 holds. Given the inductive hypothesis simplifies down to

E[xt+1] ≥
Nπ(1− δ)

δ

This is sufficient to show that Foreign can make no offer smaller than x∗∗(N) in any pe-
riod.

To see that Foreign never makes a larger offer, it is sufficient to note that Home’s stream
of payments must satisfy equation A. 12 with equality. This is not possible with any
payment larger than x∗∗(N) if x∗∗(N) is the minimum payment Foreign makes. �

Together these two lemmas suffice to prove the proposition. �

1.6 Proof of Corollary 3

To see that ∆ is positive for all N and δ < 1 it is simply sufficient to note that ∆(1, δ) =
π
δ − π > 0 and observe that the utility in equation 13 at a rate of pi

δ as N increases while
utility in equation 6 increases at the slower rate δπ. It is straightforward to show that
∆(N, 1) = 0. �

1.7 Proof of Proposition 6

The proof of this Proposition follows identical steps to that in Proposition 4. �
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1.8 Proof of Proposition 7

First, observe that if the Q̄(t) < N then the game is equivalent to that in which Foreign
makes offers without commitment. This implies that any SPE that has Foreign make
positive offers and Home conserve must feature both countries playing the strategies
described in Proposition 5. This suffices to prove the claim when Q̄(t) < N.

When Q̄(t) = Nt for all t, to show that Foreign always sets Q = N, we must eliminate
any candidate equilibria in which Foreign plays sets Q < N with positive probability. We
conduct a proof by induction starting with the case where N = 1. The first thing to note,
is that if Foreign ever makes an offer with q = 0, Lemma A. 5 demonstrated that Home
will consume in period t unless it expects xt+1 > x∗∗(1) as defined. Similarly, Lemma
A. 1 demonstrated that Home will consume in any given period if Foreign’s stream of
transfers sums to less than π. Foreign will always meet this restrictions with equality,
implying that the upper bound of Home’s payoff is π

δ .
Next, suppose that Foreign offered q = 1 and x∗(1). If Home rejects the offer and

preserves, the most it could hope for in the following period is a utility of π
δ which means

that it is indifferent between a stream of x∗(1) and rejection if that is offered by the highest
possible payoff. Similarly, lemma A. 1 demonstrates that Home is indifferent between
consumption and accepting the offer and so cannot consume. It follows that Home has no
profitable deviation to accepting x∗(1). Given that this is the case, Foreign clearly prefers
to set q = 1 so that the stream of payments required to prevent Home from consuming is
only equal to π rather than π

δ .
Next, consider the case where Nt = N. We impose the inductive hypothesis that in

the state with N − 1 trees, Foreign sets q = N − 1 and offers x∗(N) and Home accepts, so
that Foreign and Home’s utility are each given by equations 5 and 6 respectively. In this
case, if Foreign makes an offer with q = 0, then Home will conserve if and only if

∞

∑
τ=t+k

δτE[xt] ≥ π + xt+k + δV(N − 1)+

which we know must hold with equality to maximize Foreign’s utility. Similarly follow-
ing the logic of lemmas A. 5 and A. 6 Home will delay consuming whenever

xt+k + δ[xt+k+1 + π + δV(N − 1)] ≥ xt+k + π + δV(N − 1)

which implies that Foreign will only ever conserve if Foreign plays a strategy where

xtk =
π(1− δ)

δ
+ (1− δ)

N

∑
i=1

δi−1π

This implies that the maximum utility that Home could ever hope to achieve if Foreign
offered q = 0 is

π

δ
+

N

∑
i=1

δi−1π

7



Similarly, if Home selected q = N, we know from A. 2 that the best utility Home could
achieve is that in equation 6. Clearly the former is larger and represents the maximum
utility that Home could achieve.

Following identical arguments to those in the case with 1 tree, it can be shown that
Home must accept x∗(N) when Foreign sets q = 1 and that doing so maximizes Foreign’s
utility.

Following the offer strategies, it is clear that Propositions 4 and 6 apply to determine
the forest size. �

1.9 Proof of Lemma 1

The following describes the derivation of a Markov equilibrium in mixed strategies with
a non-strategic offer x in the admissible range. The proof is by induction.

With 1 tree, left Foreign has the following utility for accepting an offer

UF(1, p, x) =
u(1)− x

1− δ

and the following utility for rejecting an offer

UF(0, p, x) = q× 0 + (1− q)[u(1) + δUF(0, p, x)]

Rearranging

UF(0, p, x) =
(1− q)u(1)
1− δ(1− q)

Setting these two values equal to each other we find that Foreign is indifferent between
accepting the offer or not whenever it is the case that Home chops down the tree with
probability

q =
x(1− δ)

u(1)− xδ

If Home decides to chop following a rejection with 1 tree left, she receives a utility of
π. By contrast, if she chooses not to cut, then Home’s expected utility is given by

UH(0, q, x) = px + (1− p)× 0 + δUH(0, p, x)

Rearranging we have

UH(0, p, x) =
δpx

1− δ

Mixed strategies require that Home be indifferent between chopping and not. Setting the
utility of the two actions equal to each other we find that Home is indifferent whenever it
is the case that π = δUH(0, p, x). Substituting and rearranging, this leaves

p =
π(1− δ)

δx
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It is straightforward to verify that Home’s utility in the state with one tree is equal to
π
δ , either by substituting in for p in UH(0, p, x) or by simply observing that for Home to
indifferent between chopping and not with one tree left, Home’s utility in that state must
be given by π

δ .
The range of acceptable offers goes from [π(1−δ)

δ , u(1)]. At the lower bound p(π(1−δ)
δ |1) =

1. At the upper bound, Home is demanding the entire surplus and q(u(1)|1) = 1.
We now proceed to extend this result to N trees. To do so we impose the inductive

hypothesis that Home’s utility for the state with N − 1 trees is given by UH(N − 1) =
(N−1)π

δ . Once again, we will investigate the mixed strategies for an arbitrary x(N) from
the range of acceptable offers. With N trees, Home’s expected utility when it refrains from
chopping if its demand is rejected is given by

UH(0|N) = p(x|N)x(N) + (1− p(x|N))× 0 + δUH(0|N)

so that rearranging we have

UH(0|N) =
p(x|N)x(N)

1− δ

On the other hand, Home’s utility for chopping down a tree following a rejection is given
by π + δUH(N − 1). By the inductive assumption, we can rewrite this equation as πN. It
follows that Home will be indifferent between chopping and not whenever it is the case
that

πN =
p(x|N)x(N)

1− δ

which can be rearranged into the expression in the proposition.
Once again, it is straightforward to verify that UH(N) = Nπ

δ by solving for

UH(N) = p(x|N)[x(N) + δUH(N)] + (1− p(x))[q(x)π + δUH(N − 1) + (1− q(x))δUH(N)]

Substituting V(N) = Nπ
δ and p(x|N) confirms that UN(H) = Nπ

δ .
Now consider Foreign’s utility with N trees. Foreign’s utility for accepting an offer x

in any given period is given by

UF(x(N)|N) =
u(N)− x(N)

1− δ

On the other hand, Foreign’s utility for rejecting an offer if Home chopes with probability
q(x|N) is given by

UF(x(N), q(x|N)|N) = q(x|N)[u(N − 1) + δV(N − 1)] + [1− q(x|N)][u(N) + δUF(x(N), q(x|N)|N)]

Or rearranging

UF(x(N), q(x|N)|N) =
q(x|N)[u(N − 1) + δV(N − 1)] + [1− q(x|N)]u(N)

1− δ[1− q(x|N)]
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So that Foreign is indifferent between chopping and not whenever it is the case that

u(N)− x(N)

1− δ
=

q(x|N)[u(N − 1) + δV(N − 1)] + [1− q(x|N)]u(N)

1− δ[1− q(x|N)]

Solving for q(x|N) we find that

q(x|N) =
x(N)(1− δ)

u(N)− δx− (1− δ)[u(N − 1) + δV(N − 1)]

The bounds for x are derived from the arguments in the main text. It is straightforward
to check that q(Nπ(1−δ)

δ |N) = 1 and p(u(n)− (1− δ)∑N
i=2 u(i− 1)δN−i]|N) = 1. �

1.10 Proof of Proposition 8

This proof is a simple construction of an off-path equilibrium strategy demonstrating that
for any of the acceptable x’s, Home can construct a strategy whereby Foreign will accept
x(N).

First, observe that an agreement is possible whenever the condition in equation 18
holds. To see this simply note that this equation is derived by comparing Foreign’s utility
from the optimal agreement in which Home makes the smallest demand that it is willing
to make according to Lemma 1, x(N) = Nπ(1−δ)

δ , to Foreign’s utility from no agreement.
It is clear that this is a necessary condition for an agreement to take place.

The following argument shows that the condition in equation 18 is sufficient for an
agreement. Let VF(x(N)) denote Foreign’s lowest and highest possible expected utilities
from accepting an offer from Home with positive probability. Following the discussion in
the main text, we know that Foreign’s utility from an agreement is given by 17. It follows
that Foreign receives VF(x(N)) when Home makes the largest demand in every state
starting at N∗H which leaves Foreign with none of the surplus from an agreement. Home
can credibily threaten Foreign with this payoff because its expected utility in every state
in which an agreement is reached with positive probability is independent of the partic-
ular x(N) it demands as demonstrated in Lemma 1. We therefore postulate that Home
threatens Foreign with this payoff if Foreign does not accept its demand with positive
probability in state N∗H according to strategy q(x, N∗H) as defined in Lemma 1. It follows
that in state N∗H, Home can make any offer to Foreign in the range defined in Lemma 1
and Foreign would be weakly prefer to accept it than reject and would strictly prefer to
accept it for any x(N∗H) larger than the maximal offer Home can makes per the Lemma.
�

1.11 Proof of Lemma 2

The proof is by induction. First suppose that there is one tree and that Foreign never
makes positive offers regardless of πt. Home will chop if and only if

π ≥ δVH(1)

10



where VH(1) is Foreign’s utility at the beginning of the stage game before the realization
of πt. If Home’s strategy stipulates that they do not chop during periods in which πt = π,
then

VH(1) = pδVH(1) + (1− p)π̄

=
(1− p)π̄

1− δp

Substituting in for VH(1) in the inequality above, we find that Home will chop down the
tree absent a payment if and only if the inequality in equation 2 holds.

To complete the proof, we now consider the case with N trees in which Foreign never
makes positive offers in any state. We introduce the inductive assumption that

V(N − 1) =
N−1

∑
i=1

δi−1
[
(1− p)
1− δp

]i−1

π̄

With N trees, Home will consume a tree if and only if

π + δV(N − 1) ≥ δV(N)

where

V(N) = pδV(N) + (1− p)[π̄ + δV(N − 1)]

=
δ(1− p)[ ¯π + δV(N − 1)]

1− δp

=
N

∑
i=1

δi−1
[
(1− p)
1− δp

]i−1

π̄

This result verifies the inductive assumption. Substituting this result and the expression
for V(N − 1) into the inequality above, we find that Home will consume a tree when
πt = π if and only if the inequality in equation 19 holds. �

1.12 Proof of Lemma 3

It is easier to solve first for Home’s utility and then for Foreign’s strategy. Therefore, we
solve for parts (ii) and then (i) before proceeding to solve for part (v) and then (iv) and
(iii) in that order.

(ii) The proof follows very similar steps to that of Proposition 1 and is by induction.
Let Vh(πt, 1|ht) denote Home’s minimum continuation value at the start of every period.
Lemma 2 states that Home will consume in periods in which πt = π. Therefore, the worst
Home can do is to chop down to the tree in any period, regardless of the value of πt

Vh(πt, 1|ht) = pπ + (1− p)π̄
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Following analogous arguments to those in the proof of Proposition 1, we can then show
that V̄h(πt, 1|ht), Home’s maximal continuation valuation at any arbitrary history ht, must
also be given by

V̄h(πt, 1|ht) = pπ + (1− p)π̄

so that Vh(πt, 1) = Vh(πt, 1|ht) = V̄h(πt, 1|ht).
Now consider the case with N trees. We impose the inductive hypothesis that

V(N − 1) =
N−1

∑
i=1

pπ + (1− p)π̄

We want to show that

V(N) = pπ + (1− p)π̄ + δV(N − 1)

To do so, recall that lemma 2 implies that Home will never chop in a period in which
πt = π. Once again, the worst Home could do in any given period t is to consume a tree
regardless of the value of π, so that

V(N|ht) = pπ + (1− p)π̄ + δV(N − 1)

Following similar steps to those in the proof of Proposition 1, it is again possible to
show that V̄H(πt, N|ht) is also equal to the expression in equation 21. It follows that
VH(πt, N) = Vh(πt, N|ht) = V̄H(πt, N|ht). Furthermore, we can verify the inductive
hypothesis by substituting for V(N − 1) in the expression above.

(i) For any number of trees N or value πt, Home will refrain from consuming the tree
if and only if

x(πt, N) + δVH(N) ≥ πt + δVH(N − 1)

substituting in for the values of VH(N) and VH(N − 1) produced in part (ii) of the proof,
provides the values of x∗(π̄, N) and x∗(π, N) as in equation 20. Following identical ar-
guments to those in the proof of Proposition 1, the inequality must hold with equality as
larger offers do not survive the one-shot deviation principle.

(v) The proof follows similar steps to that of the proof of Proposition 1 and is by in-
duction. Let Vh(πt, 1|t) denote Home’s minimum continuation value at the start of every
period. Lemma 2 states that Home will not chop in periods in which πt = π. Therefore,
the worst Home can do is to chop at the first opportunity when πt = π̄. From the proof
of lemma 2 we know that this implies that

Vh(πt, 1|ht) =
(1− p)π̄

1− δp

Following analogous arguments to those in the proof of Proposition 1, we can then show
that V̄h(πt, 1|ht), Home’s maximal continuation valuation at any arbitrary history ht, must
also be given by

V̄h(πt, 1|ht) =
(1− p)π̄

1− δp

12



so that Vh(πt, 1) = Vh(πt, 1|ht) = V̄h(πt, 1|ht).
Now suppose that there are N trees remaining in the forest. We impose the inductive

hypothesis that

V(N − 1) =
N−1

∑
i

δi−1
[

1− p
1− δp

]i
π̄

We want to show that

V(N) =
(1− p)π̄

1− δp
+ δV(N − 1)

=
N−1

∑
i

δi−1
[

1− p
1− δp

]i
π̄

Once again, lemma 2 implies that Home will never chop in a period in which πt = π.
That means that the worst that Home could do in any given period t is to consume a tree
at the first opportunity at which πt = π̄ so that

VH(πt, N|ht) = pδVH(πt, N|ht) + (1− p)[π̄ + δV(N − 1)]

=
(1− p)π̄

1− δp
+ δ

1− pδV(N − 1)
1− δp

=
N−1

∑
i

δi−1
[

1− p
1− δp

]i
π̄

Following similar steps to those in the proof of Proposition 1, it is again possible to show
that V̄H(πt, N|ht) is also equal to the expression in equation 23. This completes this ele-
ment of the proof.

(iv)
For any arbitrary number of trees, if πt = π̄, then Home will accept Foreign’s offer

and conserve if and only if

x∗(π̄, N) + δV(N) ≥ π̄ + δV(N − 1)

x∗(π̄, N) ≥ π̄

[
1−

(
δ(1− p)
1− δp

)N
]

where the second equality follows from substituting for the values of V(N) and V(N− 1)
found in the previous section. Following identical arguments to those in the proof of
Proposition 1, this inequality must hold strictly as larger offers do not survive the one-
shot deviation principle.

(iii) Per lemma 2 Home will not chop if Foreign sets x(π, N) = 0. Moreover, per
part (iv) of this proof, Foreign’s offer is fixed at x∗(π̄, N) as defined in equation 22 if
Foreign wants Home to conserve and zero otherwise. It follows that setting x∗(π, N) to
any positive value is unnecessary to prevent Home from chopping in any state. Foreign’s
utility is therefore maximized by setting x∗(π, N) = 0. �
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1.13 Proof of Proposition 9

We will prove each claim in turn.
(i) If the inequality in equation 19 holds, then Foreign will conserve in a period in

which πt = π̄ if and only if

u(n) + x∗(π̄, N) + δ

[
u(n)
1− δ

− px∗(π, N)

1− δ
− (1− p)x∗(π̄, N)

1− δ

]
≥ u(n− 1) + δ

[
u(N − 1)

1− δ
− px∗(π, N − 1)

1− δ
− (1− p)x∗(π̄, N − 1)

1− δ

]
or rearranging

u(N)− u(N − 1)
1− δ

≥ x∗(π̄, N) + δ[VH(N)−VH(N − 1)]

≥ x∗(π̄, N) + δ[δN−1(pπ) + (1− p)π̄)]

≥ π̄ − δN[pπ) + (1− p)π̄)] + δN[pπ) + (1− p)π̄)]

≥ π̄

If the inequality in equation 19 does not hold, then Foreign will conserve in a period
in which πt = π̄ if and only if

u(n) + x∗(π̄, N) + δ

[
u(n)
1− δ

− (1− p)x∗(π̄, N)

1− δ

]
≥ u(n− 1) + δ

[
u(N − 1)

1− δ
− (1− p)x∗(π̄, N − 1)

1− δ

]
or rearranging and substituting in for

u(N)− u(N − 1)
1− δ

≥x∗(π̄, N)

[
1 +

δ(1− p)
1− δ

]
− x∗(π̄, N − 1)

δ(1− p)
1− δ

≥x∗(π̄, N) +
δ(1− p)

1− δ

[
(1− δ)

N

∑
i=1

π̄
δi−1(1− p)i−1

(1− δp)i

]

− x∗(π̄, N − 1)
δ(1− p)

1− δ

≥x∗(π̄, N) + +
δ(1− p)

1− δ

[
x∗( ¯π, N − 1) + (1− δ)

δN−1(1− p)N−1

(1− δp)N

]
− x∗(π̄, N − 1)

δ(1− p)
1− δ

≥π̄

[
1− δN(1− p)N

(1− δp)N

]
+ π̄

δN(1− p)N

(1− δp)N

≥π̄

where the second step follows by substituting in for the values of VH(N) and VH(N − 1)
given by equation 23. The third step is a substitution for the value of x∗(π̄, N) given by
equation 22.
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(ii) When the number of trees exceeds N∗(π̄), then the game does not enter into a
steady state when Foreign conserves since Home will still consume in periods in which
πt = π̄. We conduct a proof by induction. Recall that N = N′ + N∗(π̄). Let N′ = 1. If the
inequality in equation 19 holds and N′ = 1, then VF(N) is given by

VF(N) =
p[u(N∗(π̄) + 1)− x∗(π, N∗(π̄) + 1)]

1− δp
+

(1− p)[u(N∗(π̄)) + δVF(N∗(π̄))]

1− δp

Foreign will conserve in a period in which πt = π if and only if

u(N∗(π̄) + 1)− x∗(π, N∗(π̄) + 1) + δVF(N∗(π̄) + 1) ≥ u(N∗(π̄)) + δVF(N∗(π̄))

substituting in for the value of VF(N∗(π̄) + 1), we find that

u(N∗(π̄) + 1)− u(N∗(π̄)) ≥ π(1− δp)− δ(1− p)π̄

We now consider the case with N′ trees more than N∗(π̄). We impose the inductive
assumption that

VF(N∗(π̄) + N′ − 1) =
N′−1

∑
i=1

δi−1(1− p)i−1p[u(N∗(π̄) + N′ − i)− x∗(π, N∗(π̄ + N′ − i))]
(1− δp)i

+
N′−1

∑
i=1

δi−1(1− p)iu(N∗(π̄) + N′ − i− 1)
(1− δp)i +

δN′−1(1− p)N′−1

(1− δp)N′−1 VF(N∗(π̄))

whenever Foreign makes offers to preserve the forest in periods in which πt = π in all
states with less than N trees. It follows that if Foreign acts to preserve the forest in the
state with N trees whenever πt = π, then VF(N∗(π̄) + N′) will be given by

VF(N∗(π̄) + N′) =
p[u(N∗(π̄) + N′)− x∗(π, N∗(π̄) + N′)]

1− δp

+
(1− p)[u(N∗(π̄) + N′ − 1) + δVF(N∗(π̄) + N′ − 1)]

1− δp

Substituting in for VF(N∗(π̄) + N′ − 1), we can verify that

VF(N∗(π̄) + N′) =
+N′

∑
i=1

δi−1(1− p)i−1p[u(N∗(π̄) + N′ − i)− x∗(π, N∗(π̄ + N′ − i))]
(1− δp)i

+
+N′

∑
i=1

δi−1(1− p)iu(N∗(π̄) + N′ − i)
(1− δp)i +

δN′−1(1− p)N′

(1− δp)N′ VF(N∗(π̄))

and confirm the inductive hypothesis.
Foreign will choose to preserve in the state with N∗(π̄) + N′ trees if and only if

u(N∗(π̄) + N′)− x∗(π, N∗(π̄) + N′) + δVF(N∗(π̄) + N′)
≥ u(N − 1)− δVF(N∗(π̄) + N′ − 1)
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Substituting in for VF(N∗(π̄) + N′) we find that

u(N∗(π̄) + N′)− (1− δ)u(N∗(π̄) + N′ − 1)

≥ x∗(π, N∗(π̄) + N′) + (1− δ)δVF(u(N∗(π̄) + N′ − 1)

Note that at this point we can prove that N∗(π) is unique. First, the left-hand side of the
inequality is clearly decreasing in N because of the concavity of u(·). Second, on the right-
hand side, x∗(π, N) is increasing in N as determined by equation 20. Finally, the inductive
assumption requires that for any n ∈ (0, N − 1), Foreign has found it optimal to make an
offer whenever πt = π and never when πt = π̄ rather than delay a period before doing
so. This implies that VF(N) is increasing in N. In conjunction, these arguments show that
the above inequality is more difficult to satisfy as N increases. N∗(π) is therefore given
by the largest N for which the inequality holds.

To solve for the numerical expression for N∗(π), we substitute for VF(u(N∗(π̄)+ N′−
1) and find that

u(N)− u(N − 1)
1− δ

1− δp
− (1− δ)

N′−2

∑
i=1

δi(1− p)i−1p
(1− δp)i u(N − i− 1)− δN′(1− p)N′−1

(1− δp)N′−1

≥ π − δN[pπ + (1− p)π̄]− (1− δ)
N′−1

∑
i=1

δi(1− p)i−1

(1− δp)i π

+(1− δ)
N′−1

∑
i=1

δN(1− p)i−1

(1− δp)i [π + (1− p)π̄]

−δN′(1− p)N′−1

(1− δp)N′−1 [pπ + (1− p)π̄ − δN∗(π̄)[pπ + (1− p)π̄]]

�

2 Robustness of Markov Strategies when Home Makes Of-
fers

There exists a large number of history dependent sub-game perfect Nash equilibria to
the game where Home makes offers. However, in this section, we demonstrate that
many such equilibria are not renegotiation proof. While a subgame-perfect equilibrium
only requires that players find committing to their strategies optimal ex-ante, renegoti-
ation proofness requires that countries find their strategies, in particular their punish-
ment strategies, jointly preferable to any other subgame (Farrell and Maskin 1989). In
effect, this requires that all continuation values at any stage of the equilibrium path must
be Pareto-unranked. Otherwise, if there where two or more subgames that were pareto
ranked, then whenever the players found themselves in a pareto-inferior subgame they
could jointly agree to switch to the superior one.

It turns out that, as in (Harstad 2016), the only equilibria that are renegotiation proof
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are in mixed strategies.1 Consequently, the only subgame-perfect and renegotiation-
proof equilibria are qualitatively similar to Markov equilibria. The following Proposition
closely follows Harstad (2016, Proposition 6), extending his result to the N tree case and
to the case with leasing of trees as opposed to outright purchase.

Proposition B. 1. Any renegotiation proof equilibrium must have the following features:

(i) In responding to a demand Foreign plays the mixed strategy p(x, N) as defined in Lemma
1, part (i). In response to rejection of its demands, Home plays a mixed strategy that can
depend on History. Furthermore, Home’s choice of x may change across periods in a manner
that depends on history.

(ii) UH = U∗∗H as defined in equation 13.

(iii) Agreements will be reached with positive probability in any state N ≤ N∗H.

The basic intuition underlying this result is similar to that underlying Bard’s (2016)
renegotiation-proofness result: if there is ever a history in which Home strictly prefers
not to chop following a rejection, then both Home and Foreign would strictly prefer to
deviate and return to that history than have Home chop down the tree. Thus, for the
threat of chopping to be credible, Home must always be indifferent between chopping
and returning to any other history. This requires that Home’s utility be given by U∗∗H ,
for Foreign play a mixed strategy in response to demands, and Home to mix following a
rejection. The mixture p(x, N) is the only mixture that leaves Home indifferent between
chopping and a making another demand in the following period. However, Home’s strat-
egy following a rejection might vary, since future demands are not fixed as they are in a
Markov equilibrium.

Finally, N∗H remains the earliest date at which an agreement for the same reasons as it
did in the Markov case. Home still prefers to arrive at an agreement as early as possible
and can induce Foreign to making an agreement with positive probability by threatening
to only make high demands in future periods if Foreign does not respond to a p(x, N).
Moreover, the best and worst expected utilities that Home can present to Foreign have
not changed. Foreign can still do no worse than allowing Home to simply consume the
forest. Moreover, x(N) = Nπ(1−δ

)
δ is still the lowest demand Home can make while

receiving a utility of U∗∗H . Consequently, the state in which agreements can first be reached
is unchanged even when strategies can be history dependent.

2.1 Proof of Proposition B. 1

The proof involves three steps. First, we characterize an agreement in the state with one
tree. Second, we use an induction argument to generalize the characterization of the

1The literature distinguishes between weakly and strongly renegotiation proof equilibria. For a weakly
renegotiation proof equilibrium to be strongly renegotiation proof it cannot be pareto inferior to any other
(weakly) renegotiation proof equilibrium. As in Harstad (2016) all weakly renegotiation proof equilibria
because Home’s expected utility is invariant across all weakly renegotiation proof equilibria.
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agreement to the state with N trees. Third, we demonstrate that Foreign and Home will
reach agreements with positive probability for any N < N∗H.

We begin by characterizing agreements in the state with one tree. The following two
lemmas prove that Home’s utility is fixed and that this requires that Foreign respond
to demands by playing p(x, N). These two lemmas are where we most closely follow
Harstad (2016).

Lemma B. 7. If N = 1, then any (weakly) renegotiation proof subgame perfect equilibrium
requires that UH(1) = π

δ

Let h denote the history of the game and a = {1, 0} be a binary variable denoting
whether Foreign respectively accepts or rejects Home’s offer. Let r(h, a) denote the his-
tory in the middle of the stage game after Foreign has responded to Home’s demand but
before Home has decided whether or not to consume the tree in case of rejection. Let
Ui(N, r(h, a)) denote player i’s (i = F, H) utility in the stage game with h and N trees
remaining after Foreign has taken action a.

The proof is by induction. When N = 1, any subgame perfect equilibrium is only
weakly renegotiation proof if UH(1, r(h, 0)) = π for all h. Clearly, Home’s utility can
never be lower than π because it can always cut the tree. Moreover, following (Bard 2016)
Ui(N, r(h, 0)) can never be larger than π. Suppose not. That is, suppose that there ex-
isted a subgame in which UH(1, r(h, 0)) > π. This utility could only exist if that subgame
had at least one period in which Foreign played a strategy σ̂F(x|1, h) accepting any offer
with a higher probability than p(x, N) as given by Lemma 4 part (i). Moreover, Foreign
would only ever play σ̂F(x|1, h) if Home were to chop with positive probability in a his-
tory following a rejection. If Home is chopping the tree with positive probability, then
this implies that Ui(1, r(h′, 0)) = π for some h′. It follows that if there exist any period
in which UH(1, r(h, 0)) > π, there must follow a period in which UH(1, h) > π

δ and
UH(1, r(h, 0)) = π with Home chopping with positive probability following a rejection.

Let h′′ denote a subgame in which UH(1, h′′) > π
δ , thereby requiring that Foreign play

σ̂∗ either in that period or a following one. Let h′ denote the history at a subgame for
which UH(1, r(h′, 0)) = π and Home chops with positive probability following rejection.
Then at history r(h′, 0), Home would strictly prefer to renegotiate and revert to h′′ than
play their prescribed strategy. Similarly, Foreign would also strictly prefer to return to
h′′. This is because for their original strategy to have been subgame perfect, Foreign must
have at least weakly preferred playing σ̂∗ to allowing Home to consume the forest out-
right. It follows that Foreign would strictly prefer to return to h′′ and receive the utility for
conservation of the tree at history h′ without payment. This suffices to show that Home’s
utility must be fixed at UH(1, h) = π

δ and UH(1, r(h, 0)) = π for any possible history h. �

Lemma B. 8. Foreign responds to any offer x by playing p(x, N)

Following Lemma 1 part (i), we know that if Home’s continuation value is fixed at π at
any history r(h, 0) = π, then subgame in which Foreign accepts a demand with positive
probability must have Foreign accepting any demand with probability p(x, 1). �

The following lemmas characterize the range of possible demands, the range of For-

18



eign’s possible utilities, and the Home’s possible response to those demands. These de-
part slightly from Harstad (2016) because we consider renegotiation proof equilibria for
the rental of the tree rather than its outright sale.

Lemma B. 9. The range of possible demands in the one tree case is given by[
π(1− δ)

δ
,

u(0)
1− δ

− π

]
(B. 13)

for any δ > 0.

Following the discussion in Lemma 1, we know that the lowest possible offer is given
by x̌ := π(1−δ)

δ since Foreign must accept this offer with probability 1 when playing
p(x̌, 1). Given this the maximal offer that Home can make is given by

u(1)− x̂(1) + δ

(
u(1)
1− δ

− π

δ

)
= 0

where x̂ represents the largest demand Home can make such that Foreign is indifferent
between rejecting Home’s demand and having it consume with probability 1, and accept-
ing this demand and having Home demand x̌(1) in perpetuity thereafter. Solving for x̂
completes the proof.�

Lemma B. 10.

UF(1, h) ∈
[

0,
u(1)
1− δ

− π

δ

]
UF(1|h) ≥ 0 or else Foreign could simply allow Foreign to consume the tree. Al-

ternatively, the best Foreign could do is to have Home make the minimum demand in
perpetuity. �

Lemma B. 11. Following a rejection Home plays a strategy

q(x|h) = 1− u(1)− x(1|h) + δV(1|h(1))
u(1) + δV(1|h(0))

Home must always ensure that Foreign is indifferent between accepting a present pe-
riod offer and rejecting it so that

(1− q(x(1)|h))[u(1) + δV(1|h(0))] = u(1)− x(1|h) + δV(1|h(0))
Solving for q completes the proof of the lemma.�

This represents a complete characterization of the 1 tree case.
We will now consider the case with N trees and impose the inductive hypothesis that

UH(N − 1) = (N−1π)
δ and UF(N − 1) = ∑N−1

i=2 u(i − 1)δN−i. Next, observe that Home’s
utility must be given by equation 13. Given the inductive assumption that UH(N − 1) =
(N−1π)

δ , the proof of this claim is identical to that in Lemma B. 7. Similarly, the argument
that Foreign’s strategy is given by p(x, N) as defined in Lemma 1 is identical to that in
Lemma B. 8. The following lemma establishes the range of possible demands that Home
can make and that will be accepted with positive probability.
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Lemma B. 12. The range of possible demands in the case with N trees is given by[
Nπ(1− δ)

δ
,

u(N)

1− δ
− Nπ −

N

∑
i=2

u(i− 1)δN−i

]

for δ > 0.

As in the one tree case, the minimum demand must be given by x̌ := Nπ(1−δ)
δ because

this demand must be accepted with probability 1 when Foreign plays p(x̌(N), N) as de-
fined in Lemma 1 part (i). This implies that the maximal demand x̂(N) that Home can
make is given by the following equation

u(N)− x̂(N) + δ

[
u(N)

1− δ
− Nπ

δ

]
=

N

∑
i=2

u(i− 1)δN−i

so that Foreign is indifferent between allowing Home to chop trees one by one until they
are all consumed or making the maximum payment today followed by the minimal pay-
ment in perpetuity thereafter. Solving for x̂(N) completes the proof. �

Lemma B. 13.

UF(N, h) ∈
[

N

∑
i=2

u(i− 1)δN−i,
u(N)

1− δ
− Nπ

δ

]

From the inductive hypothesis, we know that the worst Foreign can do in the follow-
ing period is UF(N − 1) = ∑N−1

i=2 u(i − 1)δN−i. It follows that the worst that Foreign’s
present period utility must satisfy UF(N)/gequ(N− 1) + δ ∑N−1

i=2 u(i− 1)δN−i. Moreover,
the best agreement for Foreign is one in which Home makes the smallest demand in per-
petuity. �

Lemma B. 14. Following a rejection Home plays a strategy

q(x(N, h)|N, h) =
δV(N|h(1))− x(N, h)− δV(N|h(0))

u(N − 1) + δV(N − 1|h(0))− u(N) + δV(N|h(0))

Once again, the last part of the inductive proof is to identify Home’s strategy which
must keep Foreign indifferent between accepting a present period offer and rejecting it,
so that

q(x(N, h)|N, h)[u(N − 1) + δV(N − 1|h(0))] + (1− q(x(N, h)|N, h))[u(N) + δV(N|h(0))]
= u(N)− x(N, h) + δV(N|h(1))

Solving for q(x(N, h)|N, h) completes the proof. �
This completes our characterization of the N tree case.
Finally, all that remains to show is that N∗H is the largest number of trees at which an

agreement is reached with positive probability. The proof of this claim follows identical
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steps to that of Proposition 8. Once again, Home has an incentive to reach an agreement
as soon as possible, Home is indifferent as to which x it selects, and Foreign has a range
of possible utilities from an agreement. As soon N∗H is reached and there is surplus to
be had from an agreement, Home can make a “reasonable" demand and threaten Foreign
with demands that leave it with none of the surplus if its demand is not accepted with
positive probability.�

3 A Comparison of the Size of the Forest When Forest Makes
Offers with Commitment and When Home Makes Offers

There are two normative considerations in the design of international conservation agree-
ments. The first is the size of the forest, which produces large benefits when conserved.
The second, is the desire to safeguard the resource rights of resource owners, who in the
case of forests, are often poor. This model highlights that these two goals can be in direct
tension with one another - increased payments to the resource owner often come at the
expense of conservation. Moreover, our analysis suggests that, perhaps contrary to ex-
pectation, the resource owner will be able to extract transfers that exceed the market price
for the resource both when it has proposal power and without it. In the latter case this
is because the resource owner likely has the means to generate leakage and deprive any
foreign party of the ability to propose binding contracts.

Our analysis also produces several clear takeaways about optimal institutional de-
sign for the maximal conservation of forests - namely that agreements will be reached at
larger forest sizes when Home has bargaining power. Proposition 8 demonstrated that
when Home has proposal power, agreements will be reached at an earlier date than when
Foreign has proposal power and can only propose nonbinding agreements due to the
presence of leakage or otherwise. However, when Home has proposal power, there is no
guarantee that conservation will be a steady state - even if an agreement is reached, Home
might make a demand that Foreign will reject with positive probability, thereby allowing
the forest to shrink. This leaves the the conclusion uncertain and raisezs the question
whether there might be any way to increase the size of the forest further.

Though we do not believe it likely that foreign countries will be able to generate bind-
ing conservation agreements, we will note that our model is ambiguous as to whether the
forest will be larger if Home has proposal power when compared to Foreign having pro-
posal power and the ability to compose binding agreements. The following corollary sets
out the conditions required for the forest to be larger when Home has proposal power

Corollary 1. N∗H ≥ N∗ if and only if

uF(N∗H)
1− δ

−
N∗H

∑
i=2

uF(i− 1)δN∗H−i ≥ N∗[uF(N∗)− uF(N∗ − 1)]
δ(1− δ)

(C. 14)

Unfortunately, the dependence on uF(·) for all possible arguments smaller than N∗H
robs of the ability to make a clear conclusion.

21



References

Farrell, Joseph and Eric Maskin. 1989. “Renegotiation in repeated games.” Games and
Economic Behavior 1(4):327–360.

Fudenberg, Drew and Jean Tirole. 1991. Game Theory. MIT Press.

Harstad, Bård. 2016. “The market for conservation and other hostages.” Journal of Eco-
nomic Theory 166:124–151.

22


	Introduction
	Payment for Ecosystem Services Programs
	Baseline Model
	Foreign Makes Offers with Commitment
	Optimal Offers
	Equilibrium Size of the Forest

	Relaxing Commitment
	Implications for Payments
	Equilibrium Size of the Forest
	Leakage as Partial Commitment and Enforcement

	Home Setting Payment
	Optimal X and the Size of the Forest

	Markov Equilibrium with Price Shocks
	Equilibrium Strategies
	Size of the Forest

	Conclusion
	Proofs of Results in the Main Text
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Corollary 3
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Lemma 1
	Proof of Proposition 8
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Proposition 9

	Robustness of Markov Strategies when Home Makes Offers
	Proof of Proposition B. 1

	A Comparison of the Size of the Forest When Forest Makes Offers with Commitment and When Home Makes Offers

