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Abstract

In the presence of incomplete information, strong states have an incentive to invest

in costly signals that can differentiate them from weaker states. I argue that states

can signal strength by handicapping themselves, deliberately reducing their combat

effectiveness. In an ultimatum crisis bargaining model, I show that strong states can

reduce the risk of war by making themselves weaker without reducing their demands.

The key to this result is a comparative advantage that allows stronger types to fight

more effectively with handicaps. This allows for an equilibrium where (1) stronger

states adopt larger handicaps, thereby revealing their strength to the receiver, (2)

larger handicaps are more likely to deter the receiver, and (3) the positive risk of

war precludes weaker types from imitating handicap signals. The ability to reveal

strength peacefully has important ramifications for theories of mutual optimism, war

termination, and the relationship between parity and war incidence.
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Between June 25th and July 1st, 1862, the Union army suffered a series of devastating

defeats during the Seven Days’ Battles and was repulsed from Richmond. This setback

pushed a quick end to the war out of reach and prompted Lincoln to reevaluate his policy on

slavery. Initially, Lincoln had refrained from promoting emancipation fearing that it would

lead to the secession of the remaining Union slave states and alienate Unionists throughout

the Confederacy (Foner 2011, 163, 210-211). Now faced with the prospect of a longer and

more uncertain war, Lincoln came to view emancipation and the imposition of costs on

the Confederate populace as a “military necessity” (Foner 2011, 217). To that end Lincoln

convened a cabinet meeting three weeks later in which he proposed to issue the Emancipation

proclamation and declare as forever free any slave in Confederate-held territory. The sharp

policy reversal left his cabinet speechless (Foner 2011, 219; Guelzo 2005, 134).

In the ensuing cabinet debate great importance was attributed to the response of Great

Britain and France. Both sought to intervene on behalf of the Confederacy and had only

been held at bay by Union threats.1 Secretary of State Seward convinced Lincoln that issuing

the Proclamation risked inviting European intervention by signaling weakness (Guelzo 2005,

136-137). Since the Proclamation would only apply to slaves in Confederate-held territory

where the Union had no power to enforce it, it would look like the US would be trying

to instigate a slave uprising. Seward warned Lincoln that, in light of the Union’s recent

defeat, the Proclamation would look like an act of desperation. Instead, he advised Lincoln

to postpone until a victory could convince foreign audiences that the Union was not acting

out of panic. Lincoln agreed and would not issue the Proclamation until after the Union

victory at Antietam.

The existing bargaining literature provides us with no means for understanding this

behavior. Stronger states can demand more at the bargaining table and are more likely to

deter a rival. Therefore, taking actions that would improve the Union’s chances of defeating

the Confederacy should have increased its chances of thwarting intervention. Lincoln and

1See Jones (2010, 37-38, 41-42, 50, 58-59) for a description of these threats and the online appendix for
an expanded discussion of British and French policy towards the Civil War.

1



Seward determined that emancipation would be perceived as an attempt to sow civil unrest

in the Confederacy, which would certainly benefit the Union. However, they decided to hold

off to avoid appearing vulnerable. Subsequent events suggest that Lincoln was wise to heed

Seward’s advice. In the Confederacy, news of the Proclamation was received ebulliently as

a sign of Union weakness (Bashir 2015, 19-20). Similarly, British newspapers viewed the

Proclamation cynically and lampooned it as “Lincoln’s last card.” Though Antietam pushed

Britain away from intervention, Foreign Secretary Russell and Chancellor of the Exchequer

Gladstone still responded to the news of the Emancipation Proclamation with renewed calls

for action.2 Why should a country appear stronger by refraining from actions that were

expected to weaken their rivals?

In this article, I argue that Lincoln’s actions constituted a handicap.3 Originally devel-

oped in theoretical biology, handicaps are signals of strength that require that a country

reduce their capacity to fight or refrain from using it to its fullest extent. Though countries

who handicap themselves decrease their probability of winning a war, they can signal con-

fidence in their ability to fight even at reduced strength. If weaker states are unwilling to

incur the risks that handicapping poses, then strong states may use handicaps to distinguish

themselves and communicate strength. In the civil war case, Lincoln and Seward were trying

to convey their belief that the Union could defeat the Confederacy. They understood that

their military setbacks had shrouded their strength in uncertainty and sought to reveal it by

showing that they were willing to accept the risk of forgoing emancipation and the unrest it

could cause.

To explore the trade-offs presented by handicap signaling, I incorporate them into a stan-

dard crisis bargaining game. In the model, a country with private information regarding its

strength makes a take-it-or-leave-it (TIOLI) offer and can choose whether to simultaneously

handicap itself. I show that handicaps can be used to signal strength as long as they impose

2For discussions of the British response to Antietam and the Emancipation Proclamation, see Jones (2010,
231-236); Jones (1992, 179); Foreman (2010, 315-319); McPherson (2002 142-146).

3Bashir (2015) was the first to recognize this particular episode as an instance of signaling of strength.
However, our explanations as to the type of signal employed by the Union diverge.
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differential costs on signalers with different levels of strength. Strong types need to be able

to incur the risk of handicapping with relative ease. That is, a strong type should still be to

a win a conflict handily despite being handicapped. On the other hand, a weak type should

not be able to imitate the handicap without having its hope for victory plummet. The

model demonstrates that when strong types are endowed with such a signaling advantage,

then they can use it to set themselves apart. Specifically, stronger types will adopt larger

handicaps, thereby enabling the receiver to infer that a larger handicap implies a stronger

signaler. In turn the receiver is more likely to back down in response to larger handicaps.

Though handicaps can deter, the receiver still fights with some positive probability. This

risk of fighting while handicapped prevents weaker types from imitating the signal.

This article’s main result shows that when the signaler can both handicap and bargain,

she can always reveal her type. Neither bargaining alone nor signaling without bargaining can

generate a similar result. Absent handicapping, the receiver can only form beliefs about the

signaler’s strength from the offers he receives. Because states have incentives to misrepresent

their private information, the receiver makes use of the risk-reward trade-off to discourage

bluffing. By increasing the risk of war in response to large demands, the receiver can deter

weaker types from demanding more than they would under complete information. However,

the risk-reward trade-off fails for the strongest types who the receiver would not want to

fight under any circumstance. Absent handicap signaling, weaker types can take advantage

of the receiver’s reticence to fight and bluff by issuing the same demand as the strongest

types. Handicapping fixes this issue, with its differential signaling costs ensuring that each

type adopts a unique handicap signal while also preventing mimicry of their demand by

weaker types.

These results contribute to a growing literature on costly signals of strength. Though

Ramsay and Fey (2011) have shown that private information regarding strength is most

detrimental to countries’ ability to reach a bargain, the signaling literature has largely focused

on signals of resolve (Green and Long 2020, 53). Instead, most of the work studying how
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states convey strength has explored information revelation through bargaining via the risk-

reward trade-off (Dal Bó and Powell 2009; Fey and Ramsay 2007, 2016; Slantchev and

Tarar 2011).4 Green and Long (2020) provide a notable exception, arguing that states can

signal strength by making secret military technology public. Wolton (2020) also provides an

exception, studying the difficulties in signaling strength with sunk costs when the receiver

can respond with a TIOLI offer. Slantchev (2010) studies a model where the assumptions

required for handicap signaling are reversed and the Defender can impose a differentially

higher cost on a strong Challenger who reveals its type. In this case strong states may prefer

to keep their private information a secret in an attempt to ambush their rivals. Handicap

signaling complements these works by introducing a novel class of signals for the signaling

of strength that can be used to explain a host of interstate behavior.

In the next section, I describe handicap signals in greater detail. In particular, I trace

their origins in theoretical biology, provide scope conditions for their use, and describe the

conditions under which handicap signaling is likely. I then proceed to the model. First, I

establish a baseline result that bargaining alone is insufficient for the strongest types to reveal

their strength. Second, I study handicap signals in isolation and establish the conditions and

strategies required for separation. I then present the paper’s main result, integrating both

the handicap signaling and bargaining results into a single model. Finally, I discuss the

implications of handicap signaling for war-termination, power transition theory and mutual

optimism.

Handicap Signaling in the Wild

Handicap signals originated in theoretical biology to explain why certain birds prefer mates

with fitness-reducing ornaments (Zahavi 1975). Though detrimental to the fitness of the

bird, these ornaments signaled quality to a mate by indicating that an individual could

survive despite the handicap. The canonical example of this behavior is the male peacock’s

4That said, to the best of my knowledge this paper is the first to describe how the risk-reward trade-off
can fail to generate separation for the strongest types.
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long tail feathers, which are used in ostentatious mating displays, but which are costly to

produce and can also make the peacock easier for predators to capture (Zahavi and Zahavi

1999, 32-33). Formalization of this behavior demonstrated that handicaps were an “honest”

signal of mate quality so long as higher quality peacocks could more easily bear the burden

of having a large tail (Grafen 1990). In this case, they would develop a tail that weaker

peacocks would find too onerous to imitate. In turn, the female peacock could always infer

the quality of a mate from the length of its tail.

Handicap signals have also been observed in predator-prey interactions that more closely

mirror interstate conflict. Consider the problem faced by a predator encountering a group

of heterogeneous prey (Nur and Hasson 1984). Though the predator would like to select

the easiest prey to capture, she may not be able to observe the underlying fitness of each

individual quarry. Seeking to deter pursuit, fit prey can signal their ability to escape by

handicapping themselves. For example, gazelles “stot” by “leaping off the ground with all

four legs held stiff” (FitzGibbon and Fanshawe 1988, 69). Stotting is time and energy-

intensive and should reduce the chances of a successful escape. Once again, formalization

of this behavior has shown that handicapping in this way is informative because it imposes

differential costs on prey of different quality (Vega-Redondo and Hasson 1993). Fit prey

stot with relative ease, thereby enabling them to stot without it posing too great a threat

to their survival. By contrast, stotting would pose a larger risk to weaker prey should they

wind up being chased. This enables fit prey to signal their ability to escape to predators and

dissuade them from pursuing a chase.5

Handicap Signals in International Relations

It is well known that states have incentives to misrepresent their private information. Because

the uncertainty this generates may lead to war, strong types have an incentive to distinguish

themselves by investing in costly signals. As in theoretical biology, handicaps are a means

5For a contradictory interpretation of stotting see Smith and Harper (2003, 61-63).
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by which strong states can set themselves apart. In the context of international relations, a

handicap is a deliberate reduction in a country’s ability to fight a war. The requirements for

handicap signaling are the same is in theoretical biology - handicaps must impose differential

costs. When strong states incur relatively meager penalties for handicapping, then they can

signal their strength without fear of imitation by weaker types. The following describe what

are likely to be the most common forms of handicap signaling.

Manipulating buffers: Theoretical biologists have noted that quarry can signal strength

by allowing a predator to approach before beginning their escape (Vega and Redondo 1993).

In this case, the prey is attempting to signal its ability to outrun a predator by giving the

predator a head start that would doom a weaker type. In international relations, allowing

a rival a buffer can be interpreted as a sign of strength. Consider the dilemma faced by

an ancient or medieval army on its way to besiege a city. Once the army had decided to

move upon the city, it could choose to either keep its approach a secret or give the defenders

warning. If the beseiging army chose the latter, then it signaled its ability to defeat even

the most prepared defenders. For example, during the Roman conquest of Gaul, members

of the Germanic Suvei tribe negotiated with Caesar over the acceptable length of delay for

negotiations before battle (Caesar, 4.7-13). Caesar explicitly recognized the risk inherent

in allowing the enemy to reinforce and agreed to a modest delay anyway. When this truce

crumbled, Caesar was victorious and sent emissaries with demands to German tribes across

the Rhine ahead of his imminent invasion. These notifications increased risks for Caesar,

whose armies had not yet crossed the Rhine, but induced the tribes to surrender or flee

(Caesar, 4.16-19).

Underdeployment of military force: A country can also signal confidence by declining to

deploy troops or other military means available to it. For example, when China invaded

Vietnam in 1979 with a force of 400,000, Vietnam choose not to substantially reinforce its

frontline troops.6 Though large quantities of troops were available for immediate deployment

6Estimates of the number of Vietnamese troops in the theater vary from an eighth to half the size of the
Chinese army (O’Dowd 2007; Zhang 2015, 135-136).
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from the Cambodian theater, reinforcements were limited to three divisions (O’Dowd 2007,

65). Vietnam’s decision not to reinforce was effectively a handicap and is striking given the

fact that Vietnam ultimately moved seven corps to the theater after the Chinese withdrawal

(O’Dowd 2007, 72). This strategy proved to be particularly risky. Though Vietnamese

defenses managed to impose large costs on the Chinese army, Vietnam also underestimated

the number of Chinese troops and fell into a strategically precarious position.7 This example

illustrates that a state does not have to be certain about its rival’s strength before handicap

signaling, a scenario explored in a formal model in the online appendix.

Upholding moral codes: Just war theorists have long recognized that states may find it

expedient to relax moral codes while fighting (Walzer 1977, 144-151). If following rules of

engagement can impact military efficacy, then just behavior can become a symbol of strength.

For example, Israel has adopted a practice of giving civilians advance warning of attacks in

an attempt to prevent civilian loss of life (Inbar and Shamir 2014). This can be done by

communicating directly with those present at an attack site or by “roof knocking,” dropping

small munitions in an attempt to get civilians to evacuate. Though the efficacy of the practice

in preventing civilian casualties remains controversial, it provides potential enemies with a

buffer, generating a risk that military assets or intended targets can be secreted away from

the bombing site (UN 2009). The civil war example discussed above is another example

where an attempt to follow a moral code served as a handicap. This is because the British

and French had a history of bloody colonial and slave rebellions, which led them to perceive

the risks of an uprising as a humanitarian matter (Jones 2010, 121-122).

Handicap signaling by insurgent groups: Insurgent groups often choose to commit acts

of violence to signal strength (Kydd and Walter 2006; Bueno de Mesquita 2010). Observing

variation in complexity of attacks, some scholars have argued that insurgent groups can

7Historians debate whether Vietnam’s gamble paid off. Western sources emphasize that China withdrew
badly beaten and without achieving its goal of getting Vietnam to withdraw from Cambodia (Zhang 2015,
116-117). Chinese sources dispute that this was ever their intention and argue that the conflict with Vietnam
was successful in the long haul (Zhang 2015, 121). Vietnamese sources emphasize that the Chinese were
thwarted off solely through the use of border troops (Chen 1987, 106). For more on the argument that events
unfolded against Vietnam’s favor, see Zhang (2015, 109-110, 131-132, 135-136).
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reveal strength by organizing simultaneous attacks in different locations. Often these attacks

cannot provide one another with mutual support, implying that their simultaneity serves no

tactical military purpose. Explicitly referencing the logic of differential costs, Trebbi and

Weese (2019) argue that such attacks are designed to signal strength by increasing the risk

of exposure to the state’s security apparatus. Only a group that does not fear defection from

its members or detection by the state can incur this risk (Shapiro 2013). Examining patterns

of violence in Afghanistan and Pakistan, Trebbi and Weese find that insurgent groups are

more likely to coordinate simultaneous attacks where they are stronger. Studying suicide

bombings executed by Boko Haram, Warner, Chapin, and Matfes (2019) make a similar

observation, arguing that when multiple suicide bombings were organized to take place in

the same location simultaneously their perpetrators were often women and children, the least

committed combatants.

The Bargaining Baseline

I begin the formal model by exploring bargaining strategies in an ultimatum game without

signaling. I show that weak types will separate successfully by each issuing the unique

demand they would make under complete information. However, the strongest types fail to

separate and have their demands mimicked in equilibrium. This establishes a baseline result

and demonstrates that strong types may benefit from signaling in an ultimatum game.

Model Primitives

Two countries are engaged in an ultimatum game over a good of value 1. The Challenger

makes a TIOLI demand x ∈ [0, 1] of the Defender. If the Defender accepts the demand,

then the Challenger receives a payoff of x, the Defender receives the remaining 1 − x, and

the game ends. If the Defender rejects the demand, then the two countries fight a war.

War is modeled as a costly lottery where the winner receives the good (Fearon 1995). The

Challenger’s probability of winning a war will be determined by its strength s1 ∈ [s1, s1].
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I assume that this is the Challenger’s private information and that the Defender’s beliefs

are distributed according to the continuous, strictly increasing, and common knowledge

cumulative distribution function F with full support. The Challenger has probability of

winning the war p1(s1), while the Defender has the reciprocal probability of winning a war

p2(s1) = 1− p1(s1).
8 To reflect the notion that strength contributes to victory in war, p1(s1)

is strictly increasing in s1. Finally each country has a common knowledge cost of war denoted

ci (i = 1, 2).

In this environment, the Defender can only learn about the Challenger’s type from its

choice of demand. Therefore, a strategy for the Challenger is a mapping that determines

a choice of demand for every type σx : s1 → x ∈ [0, 1]. A strategy for the Defender is

a mapping from the observed demand to a probability with which to accept the demand

ψ : x→ [0, 1]. This generates an expected utility to the Challenger of

xψ(x) + (1− ψ(x))(p1(s1)− c1) (1)

Throughout the paper I solve for Perfect Bayesian Equilibria (PBE). This requires that

the Defender updates its beliefs using Bayes’ Rule whenever possible and that both players

maximize their expected utility in light of these beliefs. Let G(s1|x) denote the Defender’s

posterior beliefs. An equilibrium is therefore composed of a triple (σx, ψ,G) satisfying the

requirements for a PBE.

Equilibrium Characterization

To discourage incentives to misrepresent the Defender confronts the Challenger with a risk-

reward trade-off, accepting higher demands with a lower probability (Slantchev and Tarar

2011). Since stronger types of the Challenger have higher payoffs to fighting, they will be

willing to incur more risk and make higher demands. This allows the weakest types of the

Challenger to separate, each issuing the same unique demand that they would make under

8Throughout, I will use the subscript 1 to refer to the Challenger and 2 to the Defender.
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complete information. However, above a certain threshold level of strength all types pool

and make the maximal demand x = 1. The weakest of these pooling types are bluffing,

relying on the Defender’s hesitancy to fight the strongest types to demand more than they

would under complete information.9 Proposition 1 presents a formal characterization of this

result and figure 1 illustrates the Challenger’s strategy. (Proofs are in the appendix).

Proposition 1

In the ultimatum bargaining game with asymmetric information:

(i) There exists a Perfect Bayesian Equilibrium in which the Challenger plays

σ∗
x(s1) ≡


p1(s1) + c2 if s1 < ρ

1 if s1 ≥ ρ

(2)

where ρ is given by

ρ ≡

{
s′1 : c2 =

∫ s1
s′1
f(s1)p2(s1)ds1

1− F (ρ)

}
(3)

The Defender responds by playing

ψ∗(x) ≡


e
−

x−p(s1)−c2
c1+c2 if x < 1

(c1+c2)e
−

p1(ρ)−p1(s1)

c1+c2

1−p1(ρ)+c1
if x = 1

(4)

and has beliefs

G∗(s1|x) ≡


1 if s1 = σ∗−1

x (x) and x < 1

f(s1)
1−F (ρ)

if x = 1

(5)

(ii) σ∗
x is the unique signaling function subject to D1.

9This failure of separation is the key difference between the model presented here and previous work. Dal
Bó and Powell (2009) show that complete separation is possible in a crisis bargaining game where the size
of the pie is increasing with the Challenger’s strength. Similarly, all types can separate in the isomorphic
model where the Challenger has private information regarding the size of the pie (Reinganum and Wilde
1986; Reinganum 1988). By contrast, I show that these results do not hold when the size of the pie is fixed
and there exist types that give the Defender a negative payoff for fighting.
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0
p1(s1)

c2

x

1

1s̃1ρ
Bluffing
Types

Figure 1: Equilibrium Demands with a TIOLI Offer: This figure plots how the Chal-
lenger’s demand increases with their probability of winning. Challenger’s weaker than type
ρ demand x = p2(s1) + c2 so that demands increase linearly up to that point. Type ρ is the
weakest type to demand x = 1, and all types stronger than ρ do the same. Types in the
range [ρ, s̃1) are called bluffing types because they are the only one whose demands do not
coincide with the demands they would make if the game were one of complete information.
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The equilibrium is intuitive. For the Defender to be able to sustain the risk-reward

trade-off, she must be willing to mix between fighting and conceding in response to all but

the lowest demands.10 Separation is then possible if each type of the Challenger demands

x = p1(s1)+ c2 such that the Defender indifferent between conceding and fighting. However,

a problem arises when some types of the Challenger are too strong. Let s̃1 denote the type

for whom p1(s̃1) + c2 = 1 so that the Defender is indifferent as to whether or not it fights

type s̃1 even if makes the maximal possible demand. If s̃1 and types stronger than s̃1 are the

only types to pool on the highest possible demand x = 1, then the Defender would strictly

prefer to accept the demand than to fight. This cannot be part of an equilibrium because

weaker types could then deviate and receive the good without risking war. Therefore any

equilibrium must have a sufficient mass of weaker types, [ρ, s̃1), bluff and demand x = 1 as

well so that the Defender can be left indifferent between fighting and conceding.

Because σ∗
x leaves the Defender indifferent in response to any demand, her strategy only

needs to ensure that all types of the Challenger find σ∗
x optimal. Each type of the Challenger

will seek to increase the size of its demand until the marginal gains from doing so are equal

to the marginal costs

− ψ′(x)

ψ(x)
=

1

x− p1(s1) + c1
(6)

The left hand-side of this equation is the marginal cost of increasing the size of the demand

and represents the reduction in the probability that the Defender backs down as x increases.

The right-hand side is the marginal gain from increasing the demand and represents the

marginal change in the Challenger’s payoff if their demand is accepted, divided by the differ-

ence in payoffs between having its demand accepted and fighting. The Defender’s strategy ψ∗

is a solution to the ordinary differential equation in equation 6. This ensures that equation

6 will hold for each of the separating types and for type ρ when it demands 1. Note that

equation 6 confirms the intuition that that stronger types of the Challenger will be more

10A formal proof of this claim is provided in Fey and Ramsay (2016).
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willing to make larger demands because they have less to lose from going to war. 11

Finally, σ∗
x is unique when the Defender’s beliefs are subject to reasonable restrictions

off the equilibrium path. If the Challenger deviates to a demand that is not part of an

equilibrium, then the Defender cannot update its beliefs using Bayes’ Rule. In this case, I

follow Dal Bó and Powell (2009) and Fey and Ramsay (2016) and impose the D1 Criterion.

Formally, this requires that the Defender believe that any off-path demand be issued by the

type which can benefit from the the largest set of possible responses (Fudenberg and Tirole

1991). The proof of Proposition 1 adapts arguments from Cho and Sobel (1990) and Ramey

(1996) to show that because the strongest types are more willing to risk war, D1 implies that

the Defender must believe that any deviation to an off-path demand has to be made by the

strongest type issuing a lower equilibrium demand. Given these beliefs, it is easy to show

that any alternate equilibrium that features pooling on a demand x < 1 is unstable since

the Defender will have to believe that the strongest pooling type is behind any deviation to

an off-path demand larger than x and then strictly prefer to concede. Moreover, the proof

shows that D1 does not eliminate the equilibrium described in Proposition 1 as D1 would

require that the Defender believe that any deviation to a demand (p1(ρ) + c2, 1) be issued

by type ρ and would then strictly prefer to fight.

Modeling Handicaps

The inability of the strongest types to separate with bargaining alone gives them an incentive

to invest in costly signaling. In this section, I demonstrate that types who failed to separate

with bargaining can do so with handicap signals instead. The key to achieving this result

is an assumption of increasing differences, which requires that stronger types be penalized

less for handicapping themselves. This allows stronger types to handicap themselves more

for smaller marginal increases in the probability that the Defender concedes and discourages

11Formally, the Challenger’s expected utility function satisfies the single-crossing property, which implies
that σx must be weakly increasing. This condition is easily checked by taking the cross partial of equation
1 and seeing that it is positive. For more on single-crossing, see Ashworth and Bueno de Mesquita (2006).
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weaker types from imitation. To highlight the trade-offs inherent in handicap signaling I

temporarily suppress bargaining and assume that the two countries are engaged in a conflict

over an indivisible good.

Model Primitives

Suppose now that the countries play an ultimatum game over an indivisible good with value

1. In place of making a demand, the Challenger will instead choose a handicap signal

h ∈ [0, h̄]. The Defender observes the Challenger’s handicap and must then decide whether

to concede the good or fight. If the Defender concedes, then it receives a payoff of 0 and

the Challenger receives a payoff of 1. If the Defender chooses to fight, then both players get

their wartime payoffs which are now a function of both s1 and h. As before, the Challenger’s

probability of winning the war will be strictly increasing in its strength type s1, which remains

private information. To reflect the notion that handicaps harm a Challenger’s probability of

winning a war, p1(s1, h) is strictly decreasing in h. Without bargaining, a strategy for the

Challenger is simply a mapping from its type to a handicap choice σh : s1 → h. Following

the notation in Vega-Redondo and Hasson (1993), the Defender’s strategy is a mapping from

the observed handicap to a probability with which to concede ϕ : h → [0, 1]. This implies

that the Challengers utility function will be given by

ϕ(h) + (1− ϕ(h))(p1(s1, h)− c1) (7)

We will once again be searching for a PBE, this time denoting the Defender’s posterior beliefs

after observing h with H(s1|h).

As discussed above, handicaps can only serve as effective signals if stronger types can

bear them more easily. The following assumption is a formalization of this requirement and

is necessary to ensure that weak types will not want to imitate the signals sent by stronger

types (Nur and Hasson 1984; Grafen 1990; Vega-Redondo and Hasson 1993).
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Assumption 1

p(s′1, h
′)− p(s′1, h) > p(s1, h

′)− p(s1, h) ∀ h′ < h ∈ [0, h̄] if and only if s1 > s′1

This inequality states that a weaker type s′1 increasing their handicap from h′ to h must

experience a larger decrease in strength than any stronger type s1. For example, the

function p1(s1, h) = s1 − h
s1

satisfies this assumption as the penalty for a handicap h is

clearly decreasing in the Challenger’s strength. The popular Tullock function often used to

model military contests also satisfies this assumption when handicaps are modeled as follows

p1(s1, h) =
s1−h

s1−h+s2
where s2 denotes the Defender’s constant level of strength.12 Note that

Assumption 1 is equivalent to requiring that a lottery function have a positive cross-partial

∂2p1(s1,h)
∂s1∂h

> 0 (Ashworth and Bueno de Mesquita 2006).

While Assumption 1 is a necessary condition for handicaps to serve as a viable strategy,

a number of additional convenience assumptions can make the problem more tractable and

simplify the game tree. First, I assume that all types of the Challenger still find war profitable

without a handicap so that

p1(s1, 0)− c1 > 0 ∀ s1 (8)

This eliminates the need to model an initial decision by the Challenger of whether or not to

demand the good. Second, I assume that the Defender will strictly prefer to stand firm if no

signal is sent (h = 0) so that

∫ s̄1

s1

p2(s1, 0)dF (s1) ds1 − c2 > 0 (9)

Third, I assume that there exists a type of the Challenger which the Defender would prefer

not to fight. That is, there exists a type s̃1 ∈ (s1, s1) such that p2(s̃1, 0) = c2. Together,

12I am thankful to an anonymous reviewer for suggesting this example.
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these convenience assumptions imply that under complete information war with the strongest

types can be avoided but will always occur under asymmetric information absent signaling.

Equilibrium Characterization

This setup produces a semi-separating equilibrium in which the strongest types of the Chal-

lenger handicap themselves and the weakest types do not. Specifically, signaling states will

separate, each adopting a unique level of handicap with stronger types of the Challenger

choosing to handicap themselves more. In turn, the Defender can infer that a larger handi-

cap implies a stronger Challenger and is more likely to back down in response. The Defender

can also conclude that the absence of a handicap indicates a Challenger that the Defender

would strictly prefer to fight. The following proposition provides a complete characterization

of this equilibrium and demonstrates that is unique when the Defender’s off-path beliefs are

once again subject to reasonable restrictions.

Proposition 2

If the cross-partial on the lottery function satisfies

∂2p1(s1, h)

∂s1∂h
> −

∂p1(s1,h)
∂s1

∂p1(s1,h)
∂h

c1 + c2
(10)

then

(i) There exists a Perfect Bayesian Equilibrium where the Challenger plays,

σ∗
h(s1) ≡


0 if p1(s1, 0) ≤ 1− c2

h : p1(s1, h) = 1− c2 if p(s1, 0) > 1− c2

(11)

and the Defender responds by playing

ϕ∗(h) ≡ 1− e
1

c1+c2

∫ h
0

∂p1(σ
∗−1
h

(h),h)

∂h
dh

(12)
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and has beliefs

H∗(s1|h) ≡


f(s1)
F (s̃1)

if h = 0

1 if σ∗−1
h (h) = s1 and h > 0

(13)

(ii) σ∗
h is the unique signaling function that allows for full separation of types s1 > s̃1.

(iii) (σ∗
h, ϕ

∗, H∗) are unique subject to the D1 Criterion.

To understand this result, it is useful to begin by noting that any Perfect Bayesian Equi-

librium must have the Defender play a mixed strategy in response to any positive handicap

signal (h > 0). The Defender cannot play a pure strategy where it concedes in response to

a given handicap signal because handicaps are only costly if the Defender fights. If a given

handicap signal were to make the Defender back down with certainty, then all types would

have an incentive to pool on that signal and the signal would become uninformative. The

second convenience assumption in equation 9 would then imply that the Defender strictly

prefers to deviate and stand firm. Alternatively, if the Defender were to stand firm with cer-

tainty, then the Challenger is better off not signaling since it would prefer to fight without a

handicap. Thus, the Defender must be made indifferent between backing down and standing

firm for any given handicap signal, h ̸= 0.

The requirement that the Defender be indifferent makes the construction of an equilib-

rium with separation straightforward. If each type of the Challenger sends a unique signal,

then they must select a signal h such that p2(s1, h) = c2.
13 Because handicaps strictly re-

duce the Challenger’s probability of winning, types in the set [s1, s̃1] cannot signal as the

Defender would prefer to stand firm and fight these types even in the absence of a handicap.

Together these requirements form a strategy for all types of the Challenger. This strategy

is represented in Figure 2.

13Such an h is guaranteed to exist for each type s1 > s̃1 because p2(s1, h) is monotonically increasing on
a closed interval and so must be continuous almost everywhere (Fey and Ramsay 2011, Proposition 1).
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0 σh(s
′′
1) σh(s

′
1) σh(s1)

h

1− c2

p1(·, ·)

p1(s
′′
1, ·)

p1(s
′
1, ·)

p1(s1, ·)

s1 > s′1 > s′′1

Figure 2: The Logic of Handicap Signaling: The y-axis captures the Challenger’s prob-
ability of winning as a function of both their type s1 and handicap choice h, which varies
along the x-axis. The three sloping lines plot the changes in the probability of winning for
three different types of Challenger. The Defender is indifferent between fighting and con-
ceding the good when p1(·, ·) = 1− c2, represented by the horizontal dashed line. Types for
whom p1(s1, 0) > 1 − c2 handicap themselves until their probability of winning equals that
amount, and their handicap choices are plotted with vertical dashed lines. The effects of
Assumption 1 are captured in the figure by stronger types having smaller downward slopes
in their probability of winning for handicapping themselves.
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s1 s̃1 s1
s1

1

1− ϕ(h)

Pr(War)

Figure 3: The Probability of War with Signaling Only: This figure plots the probability
of war as a function of the Challenger’s type. For types too weak to signal, the Defender
is sure to stand firm so that the probability of war is 1. Types stronger than s̃1 handicap
themselves so that the probability of war decreases by ϕ(h).

Given that the Defender is indifferent when the Challenger handicaps itself, it selects

a strategy that ensures that σ∗
h is incentive compatible. Once again, the Challenger will

handicap itself up to the point where the marginal gain from doing so is equal to the marginal

cost

ϕ′(h)

1− ϕ(h)
= −

∂p1(s1,h)
∂h

1− p1(s1, h) + c1
(14)

Equation 14 is an ordinary differential equation with solution ϕ∗. The left-hand side of this

equation is the hazard rate determining the increase in probability that the Defender concedes

in response to a higher handicap and represents the marginal gain from handicapping. The

right-hand side of this equation represents the costs of handicapping, the decrease in the

Challenger’s payoff from handicapping weighted by the difference in payoffs from having

the Defender concede and going to war. It follows that Assumption 1 is the driving force

allowing for separation. It ensures that stronger types are willing to adopt higher handicaps

in exchange for smaller marginal increases in the probability that the Defender backs down.

This is captured in Figure 3 which plots the equilibrium probability of war.
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Finally, Proposition 2 establishes two additional results. First, Assumption 1 and its

implication that stronger types of the Challenger are better able to bear the burden of

handicapping is a necessary but insufficient condition to guarantee the existence of a semi-

separating equilibrium with handicap signaling. In the proof of Proposition 2, I show that

equation 10 is required for the Challenger’s expected utility function defined in equation 7 to

be concave and subsequently for the strategies described above to constitute an equilibrium.

This condition is notably more restrictive than Assumption 1 and is required because the

differential costs assumption is imposed on the lottery function p1(·, ·) instead of the utility

function as a whole as is generally assumed in signaling models with differential signaling

costs (Mailath 1987).14

Second, is that the equilibrium is unique when the Defender’s off-path beliefs are required

to satisfy the D1 Criterion. Per Proposition 2, part (ii) σ∗
h is the unique strategy that allows

for separation of signaling types since no other possible strategy could leave the Defender

indifferent. It thus follows that any other equilibrium must have some types in the range

(s̃1, s1] pooling on a signal h ≥ 0. As in the bargaining baseline, the strongest of these

pooling types will seek out more risk and be those most willing to handicap themselves

in exchange for a higher probability of concession. Therefore, D1 again requires that the

Defender believe that any deviation to an off-path handicap h must be performed by the

strongest type otherwise issuing a lower handicap. As a result, any alternate equilibrium

featuring pooling on a handicap h ∈ (0, σ∗
h(s1) is unstable, since the Defender will have to

believe that the strongest pooling type is behind any off-path deviation.

14Whether or not this condition holds depends on the functional form of p1(s1, h). For example, if the
lottery function takes the Tullock form mentioned earlier p1(s1, h) =

s1−h
s1−h+s2

, then this condition is satisfied

for all possible values c1 and c2. On the other hand, if the lottery function takes the form p1(s1, h) = s1− h
s1
,

then handicap signaling is only possible if 1 + c1 ≥ 2s1.
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Simultaneous Bargaining and Signaling

In this section I present the paper’s main result. I demonstrate that it is possible for all types

of the challenger to separate, either by adopting a unique demand or a unique handicap signal.

This result is a natural integration of the bargaining baseline and of handicap signaling with

an indivisible good. Types that separate by signaling when the good is indivisible continue

to do so in the unified model, adopting identical signals in both environments. As in the

bargaining baseline, these types pool on the maximal demand, effectively treating the good

as indivisible. By contrast, the weakest types do not handicap themselves and each make

a unique demand that leaves the Defender indifferent. Types who bluffed in the bargaining

baseline, are deterred from doing so by the adoption of handicap signals by stronger types.

Instead, these types revert to making the demands they would under complete information.

Figures 4 and 5 illustrate the changes in the players’ strategies when the Challenger can

both bargain and signal.
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p1(s1)

c2

x

1

1s̃1ρ
Signaling
Types

Figure 4: Equilibrium Demands with Bargaining and Signaling: This figure depicts
the changes in the Challenger’s bargaining strategy when the good is divisible and the
Challenger can signal. Each type weaker than s̃1 makes a unique demand that leaves the
Defender indifferent. Types stronger than s̃1 pool on demanding the whole good x = 1 and
separate by adopting unique handicap signals. The use of handicap signals by the strongest
types prevents types in the range [ρ, s̃1] from “bluffing” as they did in the bargaining baseline.
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1− ψ(1)

1− ψ(x)

s1 s̃1 s1
s1

1

1− ψ(1)− ϕ(h)

Pr(War)

Figure 5: The Probability of War with Bargaining and Signaling: This figure plots
the probability of war as a function of the Challenger’s type. It demonstrates that the
relationship is non-monotonic. Types in the range of [s1, s̃1] increase their demands as they
grow stronger. Higher demands lead to an increased probability of war which is designed to
ensure that weaker types do not bluff. However, for types stronger than s̃1 the probability of
war is decreasing. These types pool on demanding the entire good but each adopt a unique
handicap signal that is increasing in type. Higher handicaps indicate a stronger Challenger
and are in turn more likely to deter the Defender.

Model Primitives

To prove this result, it is necessary to explore the interactions between bargaining and

handicap signals. With simultaneous bargaining and signaling, a strategy for the Challenger

is a correspondence mapping their type to a choice of demand and a handicap. Formally,

σ : s1 ⇒ [0, h] × [0, 1]. The Defender’s strategy must account for both of these endogenous

variables when deciding whether to concede so that φ : [0, 1] × [0, h̄] → [0, 1]. Anticipating

the Defender’s strategy, the Challenger must select a pair (x, h) to maximize their expected

utility, given by

xφ(x, h) + (1− φ(x, h))(p1(s1, h)− c1) (15)

In turn the Defender’s has the conditional posterior beliefs J(s1|x, h). Therefore, a PBE is

composed of a triple (σ, φ, J).
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Equilibrium Characterization

Proposition 3 provides a complete characterization of the equilibrium where the Challenger

can both bargain and signal using handicaps.

Proposition 3

If the inequality in equation 10 holds, then

(i) there exists an equilibrium where the Challenger makes demands according to

x∗(s1) ≡


p1(s1) + c2 if p(s1, 0) ≤ 1− c2

1 if p(s1, 0) > 1− c2

(16)

and signals according to equation 11. The Defender will respond by playing

φ(x, h) = ψ(x) + ϕ(h) (17)

where ψ(x) = exp
(
−x−p(s1)−c2

c1+c2

)
and ϕ(h) is identical to equation 12 and has beliefs

J(s1|x, h) ≡


1 if s1 = x∗−1(x) , x < 1 and, h = 0

1 if s1 = σ∗−1
h (h) and x = 1

(18)

(ii) the Challenger’s strategy is unique subject to the D1 Criterion.

The following describes the logic underlying the result. To begin, note that the choice of

demand determines the amount the Challenger handicaps itself. The requirement that the

Challenger be mixing in response to all but the lowest demand implies that if the Challenger

issues a demand x smaller than p1(s1, 0) + c2, then it must be the case that the Challenger

is either pooling on the demand with weaker types or that it is using handicaps signals

to distinguish itself and deter the Defender. Separation requires the latter and that the

Challenger handicap itself up to the Defender’s point of indifference, which now occurs
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whenever p1(s1, h) = x − c2. It follows that for any given choice of demand, separation is

possible when the Challenger plays according to

h∗(x) ≡


0 if p1(s1, 0) ≤ x− c2

h : p1(s1, h) = x− c2 if p1(s1, 0) > x− c2

(19)

Because stronger types of the Challenger are better able to bear handicaps they will continue

to benefit from using them whenever possible. Formally, equation 10 from Proposition 2 con-

tinues to guarantee that the Challenger’s utility is concave in h for any given demand. This

is the sole necessary condition for separation, and is sufficient to guarantee that sufficiently

strong types of the Challenger will use handicaps to separate under D1.

The requirement that the Challenger separate using handicaps when able allows us to

express the Challenger’s choice of handicap in terms of x and transforms the Challenger’s

decision into a single variable maximization problem. Using equation 19, we can substitute

for p1(s1, h
∗(x)) into equation 15 for any Challenger that uses handicap signals. This allows

us to rewrite the Challenger’s utility function as follows

xφ(x, h∗(x)) + (1− φ(x, h∗(x)))(x− c2 − c1) (20)

This equation demonstrates that the Challenger must account for three competing effects

when selecting the optimal demand. First, higher demands increase the Challenger’s payoff

if the demand is accepted. Second, because the Challenger needs to handicap itself less when

making larger demands, increasing x also increases the Challenger’s payoff when its demand

is rejected. Together these two effects imply that higher demands increase the Challenger’s

expected payoff at a linear rate. This becomes apparent when we simplify 20 into

x− (1− φ(x, h∗(x)))(c2 + c1) (21)
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However, lower demands have the potential to increase the Challenger’s utility by increasing

the probability that a demand is accepted. While lower demands implied lower risk in the

bargaining baseline, handicap signals decrease the risk of war even further. Decreasing a

demand from x to x′ increases the set of types who are sufficiently strong to handicap from

{s1 : p1(s1, 0) ≥ x− c2} to {s1 : p1(s1, 0) ≥ x′ − c2}. Assumption 1 states that these weaker

types experience larger marginal decreases in strength when they handicap. This requires

that the Defender increase their rate of acceptance to lower demands at a convex rate.

Proposition 3 establishes that the Challenger’s expected utility is maximized when it

makes higher demands. The proof demonstrates that the first order condition of the Chal-

lenger’s utility function with respect to x produces a saddle point whenever the Challenger

selects a demand x and handicap h that are both interior solutions. This implies that

the Challenger’s expected utility is maximized by one of two “corner” solutions. Either

the Challenger maximizes the linear increase in x and makes the highest demand they can

while keeping the Defender indifferent. Or the Challenger reduces their demand to maximize

φ(x, h∗(x)). Proposition 1 has already shown that the Challenger will prefer to increase their

demand even if this increases the risk of war. Proposition 3 shows that this remains true

even though the deterrent effect of handicaps will shrink as the size of the demand grows.

It is worth noting that the introduction of signaling may actually decrease the welfare

of the strongest types. In the bargaining baseline, type ρ had to be indifferent between

demanding x = 1 and x = p1(ρ, 0) + c2. In Proposition 3, type ρ strictly prefers the lower

demand and the Defender has decreased the rate at which it backs down in response to

x = 1. The strongest types demand x = 1 in either scenario and can handicap themselves

for a higher acceptance rate in the latter. However, it is possible that the benefits from

handicapping are smaller than those required to induce ρ to demand x = 1. Though the

strongest types might prefer a return to the bargaining baseline, the D1 criterion rules this

out. D1 ensures that in any alternative equilibrium, off-path beliefs will be such that the

strongest types of Challenger will always have an incentive to deviate, handicap themselves,
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and separate.

Discussion

The previous sections demonstrated that it is possible for countries to signal strength and

achieve separation using handicaps. Because the ability of countries to signal strength has

not previously received much attention, there are a number of theoretical implications that

follow when states can convey information during crisis bargaining that have not yet been

explored. This section lays out some of these implications, which need not necessarily be

unique to handicap signals.

War Termination

A popular theory of war termination maintains that if wars are the result of incomplete

information, then wars should end when states have revealed sufficient information to reach

an agreement. Per this argument, wars are a costly mechanism by which states can resolve

the bargaining problem posed by private information. Countries can learn from battlefield

outcomes, which produce noisy but unbiased indications of a rival’s strength (Wagner 2000).

Additionally, countries can screen their rivals with strategic offers, threatening to continue

the fight against those who refuse their peace offers during wartime (Powell 2004; Slantchev

2003). Both processes allow states to learn about their rival’s strength and willingness to

fight, gradually producing a convergence in beliefs.

However, handicap signals undermine the premise of this argument. In the model, I

show that countries can enter a dispute with incomplete information over strength, com-

pletely overcome this uncertainty with a mixture of signaling and bargaining, and still find

themselves at war with complete information. In this sense, incomplete information still

leads to war, but can no longer explain why a war does not end. Additionally, handicap

signaling lends support to a rival theory of war termination that maintains that wars end

when the commitment problem inherent in war is resolved (Powell 2013; Jordan 2016). Ac-
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cording to this argument, war creates endogenous shifts in the balance of power that might

be reversed by the onset of peace. Combatants who might benefit from these shifts have an

incentive to agree to bargains and then seek to revise them later. Since countries may resume

hostilities after the onset of these power shifts, states may choose to continue fighting in the

presence of complete information. Handicaps might aggravate such commitment problems

if the effects of a handicap were reversed by the onset of peace.

Parity

An important branch of international relations literature explores whether countries are

more likely to fight when they approach parity in strength. Empirical work has produced

mixed evidence as to whether there is a relationship between parity in strength and conflict

(Bremer 1992; Gibler 2017). This underlines the need for a careful inspection of models of

interstate bargaining models to determine whether or not there is a theoretical foundation for

such a relationship. For example, Slantchev (2005) has found a non-monotonic relationship

between power and war in a model where states choose an endogenous and observable level of

military power to signal resolve. For Slantchev, war is most likely to occur at moderate levels

of strength because the strongest levels of arm deter, while the lowest levels of arm indicate

a non-serious threat and insufficient resolve. Reed (2003) argues that as countries approach

parity, there will be a corresponding increase in uncertainty that leads to an increase in

wars..

Handicaps contribute to this discussion by expanding the micro-foundations of the theory

to environments where countries can signal strength. The model presented above predicts

a non-monotonic relationship between the Challenger’s strength and the probability of war.

Illustrated in Figure 5, this relationship is the product of two competing trade-offs. Initially,

the risk of war is increasing in strength for those types who separate by making unique

demands. This is a result of the risk reward trade-off, whereby increasingly stronger types

make larger demands and are more willing to risk war. By contrast, the strongest types pool
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on the highest demand rendering the risk-reward trade-off irrelevant. Instead, these types

experience a diminishing risk of war as their strength increases due to their use of handicap

signals. The non-monotonic relationship between strength and war in the model supports

the argument that war is most likely as countries approach parity in strength.

Mutual Optimism

The literature on mutual optimism encapsulates much of the research on crisis bargaining

with private information regarding strength. Mutual optimism is a moniker used to describe

wars that begin when states have private information over strength and both believe that

they can obtain higher utility from a war than from a peaceful bargain (Ramsay 2017).

Studies of mutual optimism have largely focused how to properly formalize this definition and

determining whether or not mutual optimism is a rational cause of war (Debs forthcoming,

Fey and Ramsay 2007; 2016; Slantchev and Tarar 2011). When it comes to addressing

this uncertainty, this literature has been mostly restricted to how states can use bargaining

strategies to engender a risk-reward trade-off and in so doing, reveal strength by making

large demands. By contrast, handicap signaling opens up a new avenue of research into

mutual optimism by demonstrating that optimistic countries should be able to convey that

optimism with costly signals.

Conclusion

In this article, I argued that handicaps can serve as a signal of strength. Across modeling

environments explored above and in the online appendix, the essential features of the equi-

libria remain consistent. First, the weakest types choose to pool on no handicaps. Second,

a continuum of the strongest types adopt increasingly higher handicaps. Third, these in-

creasingly higher handicaps are more likely to deter a rival. Finally, the common necessary

condition across models is that stronger types be better able to bear the burden of handicaps

than weaker types. To the best of my knowledge, this paper presents the first model of a
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signal of strength in international relations that allows for all types to separate.

Future work should continue to study additional potential signals of strength. Such

signals are important because their theoretical predictions can have implications extend

beyond the study of interstate communication. Just as handicaps have implications for

theories of war termination, power transition theory and mutual optimism, so too could

other signals have implications unknown.

Appendix

Proof of Proposition 1

The following lemma demonstrates that the Challenger’s preferences are concave and is

required for the proof of Proposition 1.

Lemma 1

The Challenger has a concave utility function.

Proof : The second derivative of equation 1 is given by

ψ′′(x)(x− p(s1) + c1) + 2ψ′(x)

which, when substituting for x as given by σ∗
x in equation 2 becomes

ψ′′(x)(c1 + c2) + 2ψ′(x)

To see that this is negative, recall that the Defender’s strategy satisfies

ψ′(x)

ψ(x)
= − 1

c1 + c2
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So that taking the derivative with respect to x we find that

ψ′′(x) = − ψ′(x)

c1 + c2

if we substitute this into the Challenger’s second order condition, we are left simply with

ψ′(x)

which is negative as desired. ■

The remainder of the proof of Proposition 1 will proceed by demonstrating each of the

claims in turn.

Proof of claim (i): First, it is necessary to show that no player could benefit by deviating

from the strategy profile. Since the Defender is indifferent for any demand given σ∗
x, it is only

necessary to check deviations for the Challenger. Lemma 1 achieves this by demonstrating

that the Challenger’s utility function in 1 is concave so that the first order condition produces

a maximum when the Defender plays ψ∗(x). This implies that the separating types demand-

ing x = p(s1) + c2, would never want to deviate to a demand made by another separating

type. The single-crossing condition, see footnote 11, rules out the remaining possibility of

separating types deviating to x = 1 or of types demanding x = 1 deviating to a demand

made by a lower types and completes the proof of part (i).

Proof of claim (ii): The proof proceeds in four steps. First, I identify off-path demands

in any alternate equilibrium. Second, I show that D1 requires that the Defender must believe

that any deviation to such an off-path belief must be conducted by the strongest type pooling

on a lower demand. Third, I show that given these beliefs, it is possible to find a deviation

that is preferable to the postulated equilibrium strategy. Fourth, I show that D1 does not

eliminate the equilibrium described in Proposition 1.

Step 1:Any other Perfect Bayesian Equilibrium must have the Defender pooling on some

demand x̂ < 1. Let ŝ1 and ŝ1 denote the weakest and strongest type pooling on x̂. The
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single-crossing property requires that types of the Challenger pooling on x̂ form a connected

interval [̂s1, ŝ1]. Moreover, if x̂ is not the largest demand issued in equilibrium, let x′ denote

the lower bound of demands larger than x̂. We can observe two facts about the equilibrium.

First, x̂ < σ∗
x(ŝ1). If σ∗

x(ŝ1) = 1, then the claim is trivially true. Otherwise, σ∗
x must have

ŝ1 separate and demand p1(ŝ1) + c2. The Defender is only indifferent in response to x̂ if it

would strictly prefer to fight type ŝ1 and concede to ŝ1 so that x̂ < p1(ŝ1) + c2. Second,

if x′ exists then, σ∗
x(ŝ1) ≤ x′. If x′ is a demand that is being pooled upon, then type ŝ1

must be indifferent between demanding ŝ1 and x′. If x′ = 1, then ŝ1 = ρ, or the Defender

would not be indifferent in response to x′, in which case σ∗
x(ŝ1) ≤ x′ holds with equality.

Otherwise, x′ < 1 and σ∗
x(ŝ1) = p1(ŝ1)+ c2. Once again, the Defender can only be indifferent

in response to x′ if it would strictly prefer to fight type ŝ1 under complete information. This

implies that σ∗
x(ŝ1) < x′. If x′ is not a demand being pooled upon in equilibrium, then

types in the neighborhood of ŝ1 must be separating and playing σ∗
x so that σ∗

x(ŝ1) = x′ is an

off-path demand. Combining these two facts, we can conclude that all demands in the range

(x̂, σ∗
x(ŝ1)) must be off the equilibrium path. This implies that it is appropriate to apply D1

when considering deviations to demands x′′ ∈ (x̂, σ∗
x(ŝ1)).

Step 2: I will now show that the Defender must believe that any deviation to an off-path

demand x′′ ∈ (x̂, σ∗
x(ŝ1)) must be by type ŝ1. D1 requires that the Defender believe that the

deviating type is that which is willing to deviate to x′′ for the largest set of the Defender’s

possible responses. Thus it is necessary to show that type ŝ1 is willing to to deviate to x′′ for

a higher level of risk 1− ϕ(x′′) than any other type. Before beginning the proof, it is useful

to note that the Challenger’s expected utility function satisfies the single-crossing property

so that

U1(x, ϕ(x)|s1)− U1(x, ϕ(x)|s1) (22)

is strictly increasing in s1 for all x > x so long as ϕ(x) > ϕ(x) (Ashworth and Bueno de

Mesquita 2006). Following a similar logic to Dal Bó and Powell (2009, Lemma 2), this implies

that whenever U1(x
′′, ϕ(x′′)|s′1) − U1(x̂, ϕ(x̂)|s′1) = 0 for a type s′1 < ŝ1 it must be the case
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that ŝ1 strictly prefers x′′. Any weaker type s−1 < ŝ1, must weakly prefer their equilibrium

demand x− to x̂ implying that U1(x
′′, ϕ(x′′)|s−1 )−U1(x

−, ϕ(x′)|s−1 ) < 0. This suffices to show

that ŝ1 will prefer the deviation for a larger set of responses than any weaker type.

Next, consider the case where x′ exists. Recall that type ŝ1 must be indifferent between

demanding x̂ and x′ when x′ is a demand that is being pooled upon. Otherwise, it must be the

case that types in the neighborhood of ŝ1 that are stronger than it are separating. For this

strategy to be incentive compatible, the Defender’s strategy must feature a discontinuity

between x̂ and x′ that leaves ŝ1 indifferent between demanding x̂ and σ∗
x(ŝ1) (even if the

latter demand is off-the equilibrium path) and then decrease its rate of acceptance for higher

demands at a rate given by equation 6. Once again, equation 22 being increasing in type

implies that whenever U1(x
′, ϕ(x′)|s′′1) − U1(x

′′, ϕ(x′)|s′′1) = 0 for a type s′′1 > ŝ1, type ŝ1

must strictly prefer x′′. Moreover, any type stronger than ŝ1 issuing a demand x+ larger

than x′ must receive a weakly higher equilibrium utility for that demand then for x̂ so that

U1(x
+, ϕ(x′)|s′′1) − U1(x

′′, ϕ(x′′)|s′′1) > 0. This suffices to show that ŝ1 will be prefer the

deviation for a larger set of responses than any stronger type.

Step 3: Following Dal Bó and Powell (2009, Lemma 3), it is straightforward to show

that the Challenger has a profitable deviation to an off-path belief. If ŝ1 ̸= ρ, then any

deviation to x′′ ∈ (x̂, σ∗
x(ŝ1)), must have the Defender strictly prefer to concede to the

Challenger in response to x′′ than fight. If ŝ1 = ρ, then the same is true only for demands

x′′ ∈ (x̂, p1(ρ)+c2). Regardless, in both cases such such a deviation simultaneously increases

the size of the demand while reducing the risk of war, implying that the Challenger must

strictly prefer it in response to all of of the Defender’s best responses. This is sufficient to

show that the alternate equilibrium is unstable under D1.

Step 4: Finally, D1 does not eliminate the equilibrium described in Proposition 1. This

is because the arguments in Step 2 imply that the Defender will believe that a deviation to

an off-path demand x′′ ∈ (p1(ρ) + c2, 1) must be performed by type ρ. The Defender would

strictly prefer to fight type ρ in response to any such demand and will only play ϕ(x′′) = 0.
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Therefore, no type can increase their expected utility by deviating to any off-path demand

x′′ ∈ (p1(ρ) + c2, 1). ■

Proof of Proposition 2

As in Proposition 1, the proof of Proposition 2 requires that the Challenger have a con-

cave utility function which also satisfies single-crossing. The conditions required for these

properties are recovered in the following lemmata.

Lemma 2

The signaling country’s payoffs are concave provided that equation 10 is satisfied.

Proof : To demonstrate that equation 10 is sufficient for concavity, take the second deriva-

tive of the Challenger’s payoffs as given in equation 7.

ϕ′′(h)(1− p1(s1, h) + c1) +
∂2p1(s1, h)

∂2h
(1− ϕ(h))− 2ϕ′(h)

∂p1(s1, h)

∂h
< 0

Note that nothing can be said regarding whether or not this equation holds without first

examining ϕ′′(h) in greater detail. To find ϕ′′(h) I rewrite the hazard rate function as follows

ϕ′(h)(1− p1(σ
−1
h (h), h) + c1) = −∂p1(σ

−1(h), h)

∂h
(1− ϕ(h))

From the Defender’s perspective, in a separating equilibrium, as h increases so should s1 be-

cause s1 = σ−1(h). This makes this derivative of ϕ′(h) different from the second derivative of

the Challenger’s expected utility function because the Challenger has a fixed type regardless

of its choice of handicap. Taking this derivative one obtains that

ϕ′′(h)(1− p1(s1, h) + c1)−
ϕ′(h)

dσh(s1)

∂p1(s1, h)

∂s1
− ϕ′(h)

∂p1(s1, h)

∂h
=

−1− ϕ(h)

dσh(s1)

∂2p1(s1, h)

∂s1∂h
− ∂2p1(s1, h)

∂2h
(1− ϕ(h)) + ϕ′(h)

p1(s1, h)

∂h
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Next observe that since it must be the case that c2 = p1(σ
−1
h (h), h) taking the derivative of

p1(s1, h) with respect to h one obtains the following useful identity

0 =
∂p1(s1, h)

∂s1

1

dσh(s1)
+
∂p1(s1, h)

∂h
(23)

Substituting this identity in on the left-hand side ϕ′′(h) becomes

ϕ′′(h)(1−p1(s1, h)+c1) = −1− ϕ(h)

dσh(s1)

∂2p1(s1, h)

∂s1∂h
−∂

2p1(s1, h)

∂2h
(1−ϕ(h))+ϕ′(h)

p1(s1, h)

∂h
(24)

Substituting in this value for ϕ′′(h) back into the Challenger’s second derivative and rear-

ranging the inequality becomes

1

dσh(s1)

∂2p1(s1, h)

∂s1∂h
>

(
∂p1(s1, h)

∂h

)2
1

c1 + c2

Then adding and subtracting 1
c1+c2

∂p1(s1,h)
∂s1

∂p1(s1,h)
∂h

1
dσ(s1)

to the right-hand side the inequality

becomes

1

dσ(s1)

∂2p1(s1, h)

∂s1∂h
>

∂p1(s1,h)
∂h

c1 + c2

[
∂p1(s1, h)

∂h
+
∂p1(s1, h)

∂s1

1

dσ(s1)

]
− 1

dσ(s1)

∂p1(s1,h)
∂s1

∂p1(s1,h)
∂h

c1 + c2

Then applying equation 23 and dividing both sides by 1
dσh(s1)

we find the inequality in

equation 10. ■

Lemma 3

The Challenger’s utility function satisfies the single-crossing condition provided that 10 holds.

Proof: The goal of this proof is to find conditions under which

ϕ(h) + (1− ϕ(h))(p1(s1, h)− c1) ≥ ϕ(h′) + (1− ϕ(h′))(p1(s1, h
′)− c1)
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holds for s1 when h is given by σ∗
h(s1) = h > h′ and

ϕ(h′) + (1− ϕ(h′))(p1(s
′
1, h

′)− c1) ≥ ϕ(h) + (1− ϕ(h))(p1(s
′
1, h)− c1)

holds for s′1 when σh(s
′
1) = h′ < h. That is a type s1 prefers a handicap of h given by σ∗

h to

any lower handicap and similarly if a type s′1 prefers a handicap h′ given by σ∗ to any higher

handicap. Adding the inequalities one finds that

(1− ϕ(h))(p1(s1, h)− p1(s
′
1, h)) ≥ (1− ϕ(h′))(p1(s1, h

′)− p1(s
′
1, h

′)

Rearranging, the inequality becomes

(1− ϕ(h)){[p1(s1, h)− p1(s
′
1, h)]− [(p1(s1, h

′)− p1(s
′
1, h

′)]}

≥ (ϕ(h)− ϕ(h′))[(p1(s1, h
′)− p1(s

′
1, h

′)]

Then dividing both sides by the change in both variables

(1− ϕ(h)){[p1(s1, h)− p1(s
′
1, h)]− [(p1(s1, h

′)− p1(s
′
1, h

′)]}
∆s1∆h

≥ (ϕ(h)− ϕ(h′))

∆h

[(p1(s1, h
′)− p1(s

′
1, h

′)]

∆s1

Which can be rewritten as (Marsden and Tromba 1996, 173-174)

(1− ϕ(h))
∂2p1(s1, h)

∂s1∂h
≥ ϕ′(h)

p1(s1, h)

∂s1

Substituting in for the hazard rate as defined in equation 14, one obtains

∂2p1(s1, h)

∂s1∂h
≥ −∂p1(s1, h)

∂s1

∂p1(s1, h)

∂h

1

c1 + c2

as desired. ■
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The remainder of the proof of Proposition 2, will proceed by demonstrating each of the

claims in turn.

Proof of claim (i): The Challenger’s expected utility function being concave (Lemma

2) ensures that there exists a unique maximum given by σ∗
h when the Defender plays ϕ∗ as

it is derived from first order conditions. Therefore no type adopting an interior solution,

that is a signal h > 0, would choose to deviate to any other signal h′ > 0. Lemma 3 then

demonstrates that the optimal handicap for the Challenger is weakly increasing in type,

ruling out a deviation to the corner solution of h = 0. It also rules out deviations by those

adopting h = 0 to a handicap signal h > 0. This rules out any potential deviations by the

Challenger to any other on-the-path signal.

It remains to consider possible deviations by the Defender. Note that if the Challenger

plays according to σ∗
h then for all handicap signals greater than 0, the Defender is indifferent

between standing firm and backing down and so there can be no profitable deviation. More-

over, the Defender’s strategy for fighting in response to a handicap signal h = 0, is strictly

greater than its payoff for backing down in which case it receives a payoff of zero. Thus the

Defender has no incentive to deviate from ϕ∗.

Proof of claim (ii): I now demonstrate that σ∗
h is the unique signaling function that

allows for types s1 > s̃1 to separate. Let h ≡ σ∗(s̄1) denote the handicap signal used by the

strongest signaling type according per σ∗ in equation 11. Note, that when the strongest type

adopts this handicap, their probability of winning a war is p2(s̄1, h̄) = c2. No type can adopt

a handicap larger than ĥ as this would leave the the Defender with a payoff to fighting that

is larger than 0 regardless of the signaling type. This implies that the Defender has a strictly

dominant strategy to stand firm for any belief. Then, because handicaps are costly, if the

Defender is sure to stand firm, no type of the Challenger will find it optimal to deviate to a

handicap h > h̄. This implies that no alternative signaling strategy may use handicap signals

off-the-equilibrium path of σ∗
h. Similarly, any alternative signaling strategy that requires a

type s1 > s̃1 to separate using a signal other than that stipulated by σ∗
h cannot leave the
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Defender indifferent. Therefore, σ∗
h must be the only signaling strategy that where all types

s1 > s̃1 separate.

Proof of claim (iii): The proof of this claim follows identical steps to the ruling out of

alternate equilibria as it did in Proposition 1. ■

Proposition 3

The proof relies on the following lemma which demonstrates that the Challenger’s expected

utility is maximized by a demand that is a “corner” solution. For convenience, the subscript

i in φi(x, h(x)) will denote the derivative of φ(x, h(x)) with respect to its i− th argument.

Lemma 4

The Challenger’s expected utility function in equation 21 has no interior maximum and is

instead maximized by one of the two “corner” solutions x = p1(s1)+c2 or min{p1(s1, 0)+c2, 1}

Proof : To prove this claim, I demonstrate the first order condition generates a saddle

point. Taking the first order condition of equation 21 with respect to x, we find that

1 +

[
φ1(x, h

∗(x)) + φ2(x, h
∗(x))

dh∗(x)

dx

]
(c1 + c2) = 0

Note that since it must be the case that p1(s1, h
∗(x)) = x− c2, then

dh∗(x)
dx

= 1
∂p1(s1,h

∗(x))
dh∗(x)

. So

substituting in for dh
dx

and φ2(x, h
∗(x)) from equation 14 one finds that

φ1(x, h
∗(x))

φ(x, h∗(x))
= − 1

c1 + c2

Examining the second order condition of equation 21 with respect to x, we find that

[
φ11(x, h

∗(x)) + φ12(x, h
∗(x))

dh∗(x)

dx

]
(c1 + c2) + φ1(x, h

∗(x)) + φ2(x, h
∗(x))

dh∗(x)

dx
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Substituting in for dh∗(x)
dx

, φ1(x, h
∗(x)) and φ2(x, h

∗(x)), this expression simplifies to

[
φ11(x, h

∗(x)) + φ12(x, h
∗(x))

1
∂p1(s1,h∗(x))

dh∗(x)

]
(c1 + c2)−

1

c1 + c2

To find expressions for φ11 and φ12 it is necessary to take the derivative with respect to x of

φ1(x, h
∗(x)). Following similar steps, one finds that this results in

[
φ11(x, h

∗(x)) + φ12(x, h
∗(x))

1
∂p1(s1,h∗(x))

dh∗(x)

]
(c1 + c2) =

1

c1 + c2

So the second order condition must be equal to zero. This suggests that the first order

condition produces a saddle point when both the choice of handicap and demand are both

interior solutions.

This is verified by an inspection of the effects of an increase in x on equation 21. An

increase in x leads to a linear increase in the first term, but a convex decrease in the second.

It follows that one effect must dominate the other. If the linear increase in x overtakes the

effect of the decrease in φ(x, h∗(x)), then the Challenger will make the largest demand they

can make under which they can leave the Defender indifferent between accepting and not. For

types s1 > s̃1 this will involve the use of handicap signals. If the convex increase in φ(x, h∗(x))

from lower demands overtakes the linear effect of decreasing x, then the Challenger reduces

their demand as much as possible. The lowest demand the Challenger can make is the that

made by type s1 at which point the effects of handicapping no longer matter as this demand

can be accepted with certainty. ■

Proof of claim (i): When the Challenger plays σ∗ as in equations 16 and 11, then the

Defender is always indifferent in response to the Challenger’s choice of demand and handicap.

Therefore, it is only necessary to check that the Challenger is playing a best response. Per the

previous lemma, the Challenger will either demand x = p1(s1) + c2 or x = min{p1(s1, 0) +

c2, 1}. However, Proposition 1 demonstrated that the latter is always preferable even if

x = p1(s1)+ c2 is accepted with probability 1. It follows that the Challenger issues demands
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according to equation 19. Lemma 4 rules out both x and h being interior solutions and

these types do not signal. The Challenger’s signaling strategy being a best response for

types pooling on the demand x = 1 follows the same arguments as in Proposition 2, part

(i). Again Lemma 4 rules out the possibility that signaling types pooling on x = 1 have a

profitable deviation shifting to a lower demand. This suffices to prove the claim.

Proof of claim (ii): The proof of this claim follows analogous steps to those in Proposition

1.

■
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